File size: 4,103 Bytes
25851c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdb304
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from agents import Runner, trace, gen_trace_id
from search_agent import search_agent
from planner_agent import planner_agent, WebSearchItem, WebSearchPlan
from writer_agent import writer_agent, ReportData
from email_agent import email_agent
from clarify_agent import clarify_agent
import asyncio

class ResearchManager:

    async def conduct_research(self, query: str):
        """ Run the deep research process, yielding the status updates and the final report"""
        trace_id = gen_trace_id()
        with trace("Research trace", trace_id=trace_id):
            print(f"View trace: https://platform.openai.com/traces/trace?trace_id={trace_id}")
            yield f"View trace: https://platform.openai.com/traces/trace?trace_id={trace_id}"
            print("Starting research...")
            search_plan = await self.plan_searches(query)
            yield "Searches planned, starting to search..."     
            search_results = await self.perform_searches(search_plan)
            yield "Searches complete, writing report..."
            report = await self.write_report(query, search_results)
            # yield "Report written, sending email..."
            # await self.send_email(report)
            yield "Research complete"
            yield report.markdown_report
        

    async def plan_searches(self, query: str) -> WebSearchPlan:
        """ Plan the searches to perform for the query """
        print("Planning searches...")
        result = await Runner.run(
            planner_agent,
            f"Query: {query}",
        )
        print(f"Will perform {len(result.final_output.searches)} searches")
        return result.final_output_as(WebSearchPlan)

    async def perform_searches(self, search_plan: WebSearchPlan) -> list[str]:
        """ Perform the searches to perform for the query """
        print("Searching...")
        num_completed = 0
        tasks = [asyncio.create_task(self.search(item)) for item in search_plan.searches]
        results = []
        for task in asyncio.as_completed(tasks):
            result = await task
            if result is not None:
                results.append(result)
            num_completed += 1
            print(f"Searching... {num_completed}/{len(tasks)} completed")
        print("Finished searching")
        return results

    async def search(self, item: WebSearchItem) -> str | None:
        """ Perform a search for the query """
        input = f"Search term: {item.query}\nReason for searching: {item.reason}"
        try:
            result = await Runner.run(
                search_agent,
                input,
            )
            return str(result.final_output)
        except Exception:
            return None

    async def write_report(self, query: str, search_results: list[str]) -> ReportData:
        """ Write the report for the query """
        print("Thinking about report...")
        input = f"Original query: {query}\nSummarized search results: {search_results}"
        result = await Runner.run(
            writer_agent,
            input,
        )

        print("Finished writing report")
        return result.final_output_as(ReportData)
    
    async def send_email(self, report: ReportData) -> None:
        print("Writing email...")
        result = await Runner.run(
            email_agent,
            report.markdown_report,
        )
        print("Email sent")
        return report
    
    async def generate_clarification_questions(self, query: str) -> str:
        """ Generate clarification questions based on the user's query """
        print("Generating clarification questions...")
        input = f"Please analyze this research query and generate 3 clarifying questions that would help focus the research: {query}"
        try: 
            questions = await Runner.run(
                clarify_agent, 
                input
            )
            print("Generated clarification questions")
            return questions.final_output
        except Exception as e:
            print(f"Error generating questions: {e}")
            return ""