Spaces:
Sleeping
Sleeping
File size: 6,417 Bytes
50ad802 b687a9d 50ad802 a1244f5 50ad802 a1244f5 50ad802 a1244f5 50ad802 b687a9d 50ad802 a1244f5 50ad802 a1244f5 50ad802 a1244f5 b687a9d 50ad802 a1244f5 50ad802 b687a9d 50ad802 a1244f5 50ad802 a1244f5 50ad802 a1244f5 50ad802 a1244f5 50ad802 b687a9d 50ad802 a1244f5 50ad802 b687a9d 50ad802 a1244f5 50ad802 a1244f5 50ad802 b687a9d 50ad802 b687a9d 50ad802 b687a9d a1244f5 50ad802 b687a9d 50ad802 b687a9d 50ad802 b687a9d 50ad802 a1244f5 b687a9d 50ad802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import cv2
import numpy as np
import easyocr
from PIL import Image
import pillow_avif
import requests
import os
import logging
import re
import torch
import time
from functools import lru_cache
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from deep_translator import GoogleTranslator
from IndicTransToolkit.processor import IndicProcessor
# -------------------- ENV + LOGGING --------------------
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
MISTRAL_AGENT_ID = os.getenv("MISTRAL_AGENT_ID")
HF_TOKEN = os.getenv("HF_TOKEN")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
torch.set_num_threads(4)
# -------------------- UTILITIES --------------------
def preprocess_ocr_text(text: str) -> str:
text = re.sub(r"[^\u0900-\u097F\s।॥]", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
def sanitize_for_processor(text: str) -> str:
text = text.replace("<", "").replace(">", "")
text = re.sub(r"[।॥]+\s*$", "", text).strip()
return text
def split_sanskrit_verses(text: str) -> list:
parts = re.split(r'([।॥])', text.strip())
verses, cur = [], ""
for p in parts:
if p in ["।", "॥"]:
cur += p + " "
verses.append(cur.strip())
cur = ""
else:
cur += p
if cur.strip():
verses.append(cur.strip())
return [v.strip() for v in verses if v.strip()]
def call_mistral_cleaner(noisy_text: str) -> str:
instructions = """You are an AI agent specialized in cleaning Sanskrit OCR text..."""
try:
headers = {"Authorization": f"Bearer {MISTRAL_API_KEY}"}
payload = {
"agent_id": MISTRAL_AGENT_ID,
"messages": [
{"role": "system", "content": instructions},
{"role": "user", "content": f"Clean this noisy OCR Sanskrit text:\n{noisy_text}"}
]
}
response = requests.post(
"https://api.mistral.ai/v1/agents/completions",
json=payload,
headers=headers,
proxies={"http": "", "https": ""}
)
response.raise_for_status()
cleaned = response.json()["choices"][0]["message"]["content"]
return cleaned.strip()
except Exception as e:
return f"Error: {str(e)}"
# -------------------- CPU-ONLY MODEL LOADERS --------------------
@lru_cache(maxsize=1)
def load_easyocr():
return easyocr.Reader(["hi", "mr", "ne"], gpu=False)
@lru_cache(maxsize=1)
def load_indic_model():
"""
Load AI4Bharat IndicTrans2 in PURE CPU MODE.
"""
DEVICE = "cpu" # ← FORCE CPU
model_name = "ai4bharat/indictrans2-indic-indic-1B"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
token=HF_TOKEN,
trust_remote_code=True
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
token=HF_TOKEN,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float32 # ← CPU-support only
).to(DEVICE)
ip = IndicProcessor(inference=True)
translator = GoogleTranslator(source="auto", target="en")
return tokenizer, model, ip, translator, DEVICE
# -------------------- OCR STEP --------------------
def run_ocr(img):
if img is None:
return "No image uploaded."
reader = load_easyocr()
np_img = np.array(img.convert("L"))
results = reader.readtext(np_img, detail=1, paragraph=True)
extracted = " ".join([res[1] for res in results])
return extracted
# -------------------- CLEANING STEP --------------------
def clean_sanskrit(text):
if not text.strip():
return "No text found."
filtered = preprocess_ocr_text(text)
cleaned = call_mistral_cleaner(filtered)
return cleaned
# -------------------- TRANSLATION STEP --------------------
TARGET_LANGS = ["hin_Deva", "kan_Knda", "tam_Taml", "tel_Telu"]
LANG_NAMES = {
"hin_Deva": "Hindi",
"kan_Knda": "Kannada",
"tam_Taml": "Tamil",
"tel_Telu": "Telugu"
}
def translate(cleaned_text):
tokenizer, model, ip, translator, DEVICE = load_indic_model()
verses = split_sanskrit_verses(sanitize_for_processor(cleaned_text))
output = {}
for tgt in TARGET_LANGS:
per_verse = []
for verse in verses:
# Preprocessing
batch = ip.preprocess_batch([verse], src_lang="san_Deva", tgt_lang=tgt)
inputs = tokenizer(
batch,
return_tensors="pt",
padding="longest",
truncation=True
).to(DEVICE)
# CPU-friendly settings
with torch.no_grad():
generated = model.generate(
**inputs,
max_new_tokens=512, # reduce CPU load
num_beams=3, # balanced quality/speed
early_stopping=True,
do_sample=False
)
decoded = tokenizer.batch_decode(generated, skip_special_tokens=True)
final = ip.postprocess_batch(decoded, lang=tgt)[0]
per_verse.append(final)
full = "\n".join(per_verse)
try:
english = translator.translate(full)
except:
english = ""
output[LANG_NAMES[tgt]] = {"indic": full, "english": english}
return output
# -------------------- UI (GRADIO BLOCKS) --------------------
with gr.Blocks(theme="soft") as demo:
gr.Markdown("# 📖 TimeLens - Sanskrit OCR + Cleanup + Translation (CPU Version)")
with gr.Row():
img_in = gr.Image(type="pil", label="Upload Manuscript Image")
extracted_box = gr.Textbox(label="Extracted OCR Text", lines=8)
ocr_btn = gr.Button("🔍 Extract OCR")
with gr.Row():
cleaned_box = gr.Textbox(label="Cleaned Sanskrit Text", lines=8)
clean_btn = gr.Button("✨ Clean Sanskrit (Mistral)")
with gr.Row():
trans_output = gr.JSON(label="Translations Output")
trans_btn = gr.Button("🌐 Translate to Indic Languages + English")
# Bind events
ocr_btn.click(run_ocr, inputs=img_in, outputs=extracted_box)
clean_btn.click(clean_sanskrit, inputs=extracted_box, outputs=cleaned_box)
trans_btn.click(translate, inputs=cleaned_box, outputs=trans_output)
demo.launch()
|