File size: 6,417 Bytes
50ad802
 
 
 
 
 
 
 
 
 
 
 
 
b687a9d
50ad802
 
 
 
a1244f5
50ad802
 
 
 
 
 
 
 
a1244f5
50ad802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1244f5
50ad802
b687a9d
50ad802
 
 
 
 
a1244f5
50ad802
 
a1244f5
50ad802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1244f5
b687a9d
50ad802
a1244f5
50ad802
 
b687a9d
50ad802
a1244f5
 
 
 
 
50ad802
 
 
a1244f5
 
 
50ad802
a1244f5
50ad802
 
 
 
a1244f5
 
50ad802
 
 
 
 
 
 
 
 
 
 
b687a9d
50ad802
 
 
a1244f5
50ad802
 
 
b687a9d
50ad802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1244f5
 
 
 
 
 
 
 
 
 
 
50ad802
 
 
a1244f5
 
50ad802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b687a9d
50ad802
 
 
 
b687a9d
50ad802
b687a9d
a1244f5
50ad802
 
b687a9d
 
 
50ad802
b687a9d
 
 
50ad802
b687a9d
 
 
50ad802
a1244f5
b687a9d
50ad802
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import cv2
import numpy as np
import easyocr
from PIL import Image
import pillow_avif
import requests
import os
import logging
import re
import torch
import time

from functools import lru_cache
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from deep_translator import GoogleTranslator
from IndicTransToolkit.processor import IndicProcessor


# -------------------- ENV + LOGGING --------------------
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
MISTRAL_AGENT_ID = os.getenv("MISTRAL_AGENT_ID")
HF_TOKEN = os.getenv("HF_TOKEN")

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

torch.set_num_threads(4)


# -------------------- UTILITIES --------------------
def preprocess_ocr_text(text: str) -> str:
    text = re.sub(r"[^\u0900-\u097F\s।॥]", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text


def sanitize_for_processor(text: str) -> str:
    text = text.replace("<", "").replace(">", "")
    text = re.sub(r"[।॥]+\s*$", "", text).strip()
    return text


def split_sanskrit_verses(text: str) -> list:
    parts = re.split(r'([।॥])', text.strip())
    verses, cur = [], ""
    for p in parts:
        if p in ["।", "॥"]:
            cur += p + " "
            verses.append(cur.strip())
            cur = ""
        else:
            cur += p

    if cur.strip():
        verses.append(cur.strip())

    return [v.strip() for v in verses if v.strip()]


def call_mistral_cleaner(noisy_text: str) -> str:
    instructions = """You are an AI agent specialized in cleaning Sanskrit OCR text..."""

    try:
        headers = {"Authorization": f"Bearer {MISTRAL_API_KEY}"}
        payload = {
            "agent_id": MISTRAL_AGENT_ID,
            "messages": [
                {"role": "system", "content": instructions},
                {"role": "user", "content": f"Clean this noisy OCR Sanskrit text:\n{noisy_text}"}
            ]
        }

        response = requests.post(
            "https://api.mistral.ai/v1/agents/completions",
            json=payload,
            headers=headers,
            proxies={"http": "", "https": ""}
        )

        response.raise_for_status()
        cleaned = response.json()["choices"][0]["message"]["content"]
        return cleaned.strip()

    except Exception as e:
        return f"Error: {str(e)}"


# -------------------- CPU-ONLY MODEL LOADERS --------------------
@lru_cache(maxsize=1)
def load_easyocr():
    return easyocr.Reader(["hi", "mr", "ne"], gpu=False)


@lru_cache(maxsize=1)
def load_indic_model():
    """
    Load AI4Bharat IndicTrans2 in PURE CPU MODE.
    """

    DEVICE = "cpu"      # ← FORCE CPU
    model_name = "ai4bharat/indictrans2-indic-indic-1B"

    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        token=HF_TOKEN,
        trust_remote_code=True
    )

    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_name,
        token=HF_TOKEN,
        trust_remote_code=True,
        low_cpu_mem_usage=True,
        torch_dtype=torch.float32      # ← CPU-support only
    ).to(DEVICE)

    ip = IndicProcessor(inference=True)
    translator = GoogleTranslator(source="auto", target="en")

    return tokenizer, model, ip, translator, DEVICE


# -------------------- OCR STEP --------------------
def run_ocr(img):
    if img is None:
        return "No image uploaded."

    reader = load_easyocr()
    np_img = np.array(img.convert("L"))

    results = reader.readtext(np_img, detail=1, paragraph=True)
    extracted = " ".join([res[1] for res in results])

    return extracted


# -------------------- CLEANING STEP --------------------
def clean_sanskrit(text):
    if not text.strip():
        return "No text found."

    filtered = preprocess_ocr_text(text)
    cleaned = call_mistral_cleaner(filtered)
    return cleaned


# -------------------- TRANSLATION STEP --------------------
TARGET_LANGS = ["hin_Deva", "kan_Knda", "tam_Taml", "tel_Telu"]
LANG_NAMES = {
    "hin_Deva": "Hindi",
    "kan_Knda": "Kannada",
    "tam_Taml": "Tamil",
    "tel_Telu": "Telugu"
}


def translate(cleaned_text):
    tokenizer, model, ip, translator, DEVICE = load_indic_model()

    verses = split_sanskrit_verses(sanitize_for_processor(cleaned_text))
    output = {}

    for tgt in TARGET_LANGS:
        per_verse = []

        for verse in verses:

            # Preprocessing
            batch = ip.preprocess_batch([verse], src_lang="san_Deva", tgt_lang=tgt)

            inputs = tokenizer(
                batch,
                return_tensors="pt",
                padding="longest",
                truncation=True
            ).to(DEVICE)

            # CPU-friendly settings
            with torch.no_grad():
                generated = model.generate(
                    **inputs,
                    max_new_tokens=512,         # reduce CPU load
                    num_beams=3,                # balanced quality/speed
                    early_stopping=True,
                    do_sample=False
                )

            decoded = tokenizer.batch_decode(generated, skip_special_tokens=True)
            final = ip.postprocess_batch(decoded, lang=tgt)[0]
            per_verse.append(final)

        full = "\n".join(per_verse)

        try:
            english = translator.translate(full)
        except:
            english = ""

        output[LANG_NAMES[tgt]] = {"indic": full, "english": english}

    return output


# -------------------- UI (GRADIO BLOCKS) --------------------
with gr.Blocks(theme="soft") as demo:

    gr.Markdown("# 📖 TimeLens - Sanskrit OCR + Cleanup + Translation (CPU Version)")

    with gr.Row():
        img_in = gr.Image(type="pil", label="Upload Manuscript Image")
        extracted_box = gr.Textbox(label="Extracted OCR Text", lines=8)
        ocr_btn = gr.Button("🔍 Extract OCR")

    with gr.Row():
        cleaned_box = gr.Textbox(label="Cleaned Sanskrit Text", lines=8)
        clean_btn = gr.Button("✨ Clean Sanskrit (Mistral)")

    with gr.Row():
        trans_output = gr.JSON(label="Translations Output")
        trans_btn = gr.Button("🌐 Translate to Indic Languages + English")

    # Bind events
    ocr_btn.click(run_ocr, inputs=img_in, outputs=extracted_box)
    clean_btn.click(clean_sanskrit, inputs=extracted_box, outputs=cleaned_box)
    trans_btn.click(translate, inputs=cleaned_box, outputs=trans_output)

demo.launch()