Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,135 +1,120 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
from datetime import datetime, timedelta
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from datasets import load_dataset, Dataset, DatasetDict, concatenate_datasets
|
| 6 |
-
from huggingface_hub import HfFolder
|
| 7 |
-
from sentence_transformers import SentenceTransformer, util
|
| 8 |
-
import torch
|
| 9 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
# ================================
|
| 14 |
-
MODEL_TOKEN = os.environ.get("HF_TOKEN") # for model usage
|
| 15 |
-
DATASET_TOKEN = os.environ.get("dataset_HF_TOKEN") # for dataset updates
|
| 16 |
-
DATASET_NAME = "guardian-ai-qna"
|
| 17 |
-
|
| 18 |
-
MAX_QUERIES = 5 # max queries per user per window
|
| 19 |
-
WINDOW_HOURS = 1 # time window for rate limiting
|
| 20 |
-
|
| 21 |
-
# Rate limiter store
|
| 22 |
-
user_queries = {}
|
| 23 |
-
|
| 24 |
-
# Save dataset token for pushes
|
| 25 |
-
HfFolder.save_token(DATASET_TOKEN)
|
| 26 |
-
|
| 27 |
-
# Load or create dataset
|
| 28 |
-
try:
|
| 29 |
-
dataset = load_dataset(DATASET_NAME, use_auth_token=DATASET_TOKEN)
|
| 30 |
-
except:
|
| 31 |
-
dataset = DatasetDict({"train": Dataset.from_dict({"question": [], "answer": [], "embedding": []})})
|
| 32 |
-
|
| 33 |
-
# Load embedding model
|
| 34 |
-
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 35 |
-
|
| 36 |
-
# ================================
|
| 37 |
-
# HELPER FUNCTIONS
|
| 38 |
-
# ================================
|
| 39 |
-
|
| 40 |
-
def check_rate_limit(user_id):
|
| 41 |
-
now = datetime.now()
|
| 42 |
-
queries = user_queries.get(user_id, [])
|
| 43 |
-
# Remove expired queries
|
| 44 |
-
queries = [q for q in queries if q > now - timedelta(hours=WINDOW_HOURS)]
|
| 45 |
-
user_queries[user_id] = queries
|
| 46 |
-
|
| 47 |
-
if len(queries) >= MAX_QUERIES:
|
| 48 |
-
next_allowed = min(queries) + timedelta(hours=WINDOW_HOURS)
|
| 49 |
-
wait_seconds = int((next_allowed - now).total_seconds())
|
| 50 |
-
return False, wait_seconds
|
| 51 |
-
return True, 0
|
| 52 |
-
|
| 53 |
-
def log_query(user_id):
|
| 54 |
-
now = datetime.now()
|
| 55 |
-
user_queries.setdefault(user_id, []).append(now)
|
| 56 |
-
|
| 57 |
-
def find_in_dataset(question, threshold=0.75):
|
| 58 |
-
if len(dataset["train"]) == 0:
|
| 59 |
-
return None
|
| 60 |
-
# Compute embedding for input
|
| 61 |
-
question_emb = embed_model.encode(question, convert_to_tensor=True)
|
| 62 |
-
# Load existing embeddings
|
| 63 |
-
existing_embs = torch.tensor(dataset["train"]["embedding"]) if dataset["train"]["embedding"] else None
|
| 64 |
-
if existing_embs is None or len(existing_embs) == 0:
|
| 65 |
-
return None
|
| 66 |
-
# Compute cosine similarities
|
| 67 |
-
similarities = util.cos_sim(question_emb, existing_embs)[0]
|
| 68 |
-
max_score, idx = torch.max(similarities, dim=0)
|
| 69 |
-
if max_score >= threshold:
|
| 70 |
-
return dataset["train"]["answer"][idx.item()]
|
| 71 |
return None
|
| 72 |
|
| 73 |
-
def
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
if
|
| 95 |
-
return
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
send_btn = gr.Button("Send")
|
| 131 |
-
|
| 132 |
-
send_btn.click(fn=chat, inputs=[chatbot, msg, session_id], outputs=[chatbot, msg])
|
| 133 |
-
msg.submit(fn=chat, inputs=[chatbot, msg, session_id], outputs=[chatbot, msg])
|
| 134 |
-
|
| 135 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
+
# app.py (Hugging Face Space)
|
| 2 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import requests
|
| 4 |
+
from datasets import load_dataset, Dataset, concatenate_datasets
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# ----------------------------
|
| 10 |
+
# Load datasets
|
| 11 |
+
# ----------------------------
|
| 12 |
+
|
| 13 |
+
# Your main dataset (where new Q/A will be saved)
|
| 14 |
+
main_ds_name = "princemaxp/cybersecurity-main"
|
| 15 |
+
main_ds = load_dataset(main_ds_name, split="train")
|
| 16 |
+
|
| 17 |
+
# External datasets (read-only)
|
| 18 |
+
external_datasets = [
|
| 19 |
+
("Trendyol-Security/cybersecurity-defense-instruction-tuning-v2", "train"),
|
| 20 |
+
("Rowden/CybersecurityQAA", "train"),
|
| 21 |
+
("Nitral-AI/Cybersecurity-ShareGPT", "train"),
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
ext_ds_list = [load_dataset(name, split=split) for name, split in external_datasets]
|
| 25 |
+
|
| 26 |
+
# Keywords dataset (for classification)
|
| 27 |
+
keywords_ds = load_dataset("princemaxp/cybersecurity-keywords", split="train")
|
| 28 |
+
|
| 29 |
+
# ----------------------------
|
| 30 |
+
# Embedding model
|
| 31 |
+
# ----------------------------
|
| 32 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 33 |
+
|
| 34 |
+
# Precompute embeddings
|
| 35 |
+
main_q_embeddings = embedder.encode(main_ds["question"], convert_to_tensor=True)
|
| 36 |
+
|
| 37 |
+
ext_q_embeddings = []
|
| 38 |
+
for ds in ext_ds_list:
|
| 39 |
+
ext_q_embeddings.append(embedder.encode(ds["question"], convert_to_tensor=True))
|
| 40 |
+
|
| 41 |
+
keywords = keywords_ds["keyword"]
|
| 42 |
+
keyword_embeddings = embedder.encode(keywords, convert_to_tensor=True)
|
| 43 |
+
|
| 44 |
+
# ----------------------------
|
| 45 |
+
# Helper functions
|
| 46 |
+
# ----------------------------
|
| 47 |
+
|
| 48 |
+
def is_cybersecurity_question(user_query, threshold=0.65):
|
| 49 |
+
query_embedding = embedder.encode(user_query, convert_to_tensor=True)
|
| 50 |
+
cos_sim = util.cos_sim(query_embedding, keyword_embeddings)
|
| 51 |
+
max_score = cos_sim.max().item()
|
| 52 |
+
return max_score >= threshold
|
| 53 |
+
|
| 54 |
+
def search_dataset(user_query, dataset, dataset_embeddings, top_k=1, threshold=0.7):
|
| 55 |
+
query_embedding = embedder.encode(user_query, convert_to_tensor=True)
|
| 56 |
+
cos_sim = util.cos_sim(query_embedding, dataset_embeddings)[0]
|
| 57 |
+
best_idx = cos_sim.argmax().item()
|
| 58 |
+
best_score = cos_sim[best_idx].item()
|
| 59 |
|
| 60 |
+
if best_score >= threshold:
|
| 61 |
+
return dataset[best_idx]["answer"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return None
|
| 63 |
|
| 64 |
+
def call_render_service(question):
|
| 65 |
+
url = os.getenv("RENDER_URL", "https://render-python-app-4ty3.onrender.com/answer")
|
| 66 |
+
try:
|
| 67 |
+
response = requests.post(url, json={"question": question}, timeout=15)
|
| 68 |
+
if response.status_code == 200:
|
| 69 |
+
return response.json().get("answer", "No answer received.")
|
| 70 |
+
return "Render service error."
|
| 71 |
+
except Exception as e:
|
| 72 |
+
return f"Render service failed: {str(e)}"
|
| 73 |
+
|
| 74 |
+
def save_to_main_dataset(question, answer):
|
| 75 |
+
global main_ds, main_q_embeddings
|
| 76 |
+
new_row = {"question": [question], "answer": [answer]}
|
| 77 |
+
new_ds = Dataset.from_dict(new_row)
|
| 78 |
+
main_ds = concatenate_datasets([main_ds, new_ds])
|
| 79 |
+
main_q_embeddings = embedder.encode(main_ds["question"], convert_to_tensor=True)
|
| 80 |
+
# Push back to HF Hub (requires HF token set as secret)
|
| 81 |
+
main_ds.push_to_hub(main_ds_name)
|
| 82 |
+
|
| 83 |
+
def get_answer(user_query):
|
| 84 |
+
# Step 1: Check if cybersecurity-related
|
| 85 |
+
if not is_cybersecurity_question(user_query):
|
| 86 |
+
return "This doesn’t seem like a cybersecurity-related question. Please refine your query."
|
| 87 |
+
|
| 88 |
+
# Step 2: Search in main dataset
|
| 89 |
+
answer = search_dataset(user_query, main_ds, main_q_embeddings)
|
| 90 |
+
if answer:
|
| 91 |
+
return answer
|
| 92 |
+
|
| 93 |
+
# Step 3: Search in external datasets
|
| 94 |
+
for ds, emb in zip(ext_ds_list, ext_q_embeddings):
|
| 95 |
+
answer = search_dataset(user_query, ds, emb)
|
| 96 |
+
if answer:
|
| 97 |
+
save_to_main_dataset(user_query, answer)
|
| 98 |
+
return answer
|
| 99 |
+
|
| 100 |
+
# Step 4: Fallback → Render service
|
| 101 |
+
answer = call_render_service(user_query)
|
| 102 |
+
save_to_main_dataset(user_query, answer)
|
| 103 |
+
return answer
|
| 104 |
+
|
| 105 |
+
# ----------------------------
|
| 106 |
+
# Gradio interface
|
| 107 |
+
# ----------------------------
|
| 108 |
+
def chatbot_interface(user_input):
|
| 109 |
+
return get_answer(user_input)
|
| 110 |
+
|
| 111 |
+
iface = gr.Interface(
|
| 112 |
+
fn=chatbot_interface,
|
| 113 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask a cybersecurity question..."),
|
| 114 |
+
outputs="text",
|
| 115 |
+
title="Guardian AI Chatbot",
|
| 116 |
+
description="Ask me anything about cybersecurity!"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|