File size: 17,979 Bytes
2230883
8b14dd2
ee317af
 
ea8b158
8b14dd2
 
ea8b158
8b14dd2
8fc2985
 
ea8b158
8a2ba41
ea8b158
b4ff4ab
571721c
ea8b158
8b14dd2
 
 
 
65928b6
8b14dd2
 
 
 
65928b6
8b14dd2
ea8b158
65928b6
ea8b158
 
 
 
20346f9
c35e231
ea8b158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b14dd2
ea8b158
 
 
 
 
 
ee317af
ea8b158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2ba41
ea8b158
 
 
 
8a2ba41
8b14dd2
ddfc2a2
8a2ba41
 
 
ddfc2a2
 
 
8a2ba41
ea8b158
3c8af7a
ea8b158
8a2ba41
ddfc2a2
 
8a2ba41
 
 
 
 
 
ddfc2a2
8fc2985
 
65928b6
8a2ba41
ddfc2a2
 
 
 
 
 
 
 
8b14dd2
8a2ba41
 
ddfc2a2
 
 
 
8fc2985
 
ea8b158
8a2ba41
ddfc2a2
5663d15
 
8a2ba41
ddfc2a2
8fc2985
ddfc2a2
8a2ba41
 
8fc2985
 
 
 
8a2ba41
8fc2985
 
 
 
 
 
 
 
 
 
8a2ba41
ea8b158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ff4ab
ea8b158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b14dd2
bc33af7
 
 
8b14dd2
65928b6
8b14dd2
891571d
46d3028
891571d
 
 
 
 
8b14dd2
891571d
8b14dd2
 
cbc2b17
ea8b158
7db566e
571721c
8b14dd2
ddfc2a2
 
 
 
 
 
 
46d3028
 
ea8b158
0225ba5
ea8b158
210594e
b4ff4ab
210594e
b4ff4ab
210594e
ea8b158
c35e231
ddfc2a2
ea8b158
ddfc2a2
 
 
 
ea8b158
ddfc2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db754f
8b14dd2
ddfc2a2
 
 
 
 
5db754f
8b14dd2
e5cf0c8
ddfc2a2
 
 
e5cf0c8
b4ff4ab
ddfc2a2
 
 
 
 
 
5db754f
ddfc2a2
8fc2985
 
 
6a0e816
8fc2985
 
 
 
c35e231
 
 
 
27bd1d2
c35e231
ddfc2a2
 
 
8fc2985
ddfc2a2
 
 
c35e231
ddfc2a2
 
 
 
 
 
c35e231
8b14dd2
 
 
 
 
 
 
ea8b158
8b14dd2
ddfc2a2
 
8b14dd2
 
 
 
 
 
ddfc2a2
8fc2985
 
8b14dd2
8fc2985
8b14dd2
 
dc7f40f
ee317af
2cd68a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
import random
import uuid
from typing import Tuple, Union, List, Optional, Any, Dict
import numpy as np
import time
import zipfile
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

# Description for the app
DESCRIPTION = """## flux realism hpc/."""

# Helper functions
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Load pipelines for both models
# Flux.1-dev-realism
base_model_dev = "black-forest-labs/FLUX.1-dev"
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"
pipe_dev.load_lora_weights(lora_repo)
pipe_dev.to("cuda")

# Flux.1-krea
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe_krea = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", torch_dtype=dtype, vae=taef1).to(device)

# Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )

    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]

        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()

    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]

pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)

# Helper functions for flux.1-krea
def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# Styles for flux.1-dev-realism
style_list = [
    {"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
    {"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
    {"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
    {"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n

# Generation function for flux.1-dev-realism
@spaces.GPU
def generate_dev(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    num_inference_steps: int = 30,
    num_images: int = 1,
    zip_images: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
    
    if use_negative_prompt:
        final_negative_prompt = style_negative_prompt + " " + negative_prompt
    else:
        final_negative_prompt = style_negative_prompt
    
    final_negative_prompt = final_negative_prompt.strip()
    
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"
    
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    start_time = time.time()
    
    images = pipe_dev(
        prompt=positive_prompt,
        negative_prompt=final_negative_prompt if final_negative_prompt else None,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images,
        generator=generator,
        output_type="pil",
    ).images
    
    end_time = time.time()
    duration = end_time - start_time
    
    image_paths = [save_image(img) for img in images]
    
    zip_path = None
    if zip_images:
        zip_name = str(uuid.uuid4()) + ".zip"
        with zipfile.ZipFile(zip_name, 'w') as zipf:
            for i, img_path in enumerate(image_paths):
                zipf.write(img_path, arcname=f"Img_{i}.png")
        zip_path = zip_name
    
    return image_paths, seed, f"{duration:.2f}", zip_path

# Generation function for flux.1-krea
@spaces.GPU
def generate_krea(
    prompt: str,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 4.5,
    randomize_seed: bool = False,
    num_inference_steps: int = 28,
    num_images: int = 1,
    zip_images: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    start_time = time.time()
    
    images = []
    for _ in range(num_images):
        final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ))[-1]  # Take the final image only
        images.append(final_img)
    
    end_time = time.time()
    duration = end_time - start_time
    
    image_paths = [save_image(img) for img in images]
    
    zip_path = None
    if zip_images:
        zip_name = str(uuid.uuid4()) + ".zip"
        with zipfile.ZipFile(zip_name, 'w') as zipf:
            for i, img_path in enumerate(image_paths):
                zipf.write(img_path, arcname=f"Img_{i}.png")
        zip_path = zip_name
    
    return image_paths, seed, f"{duration:.2f}", zip_path

# Main generation function to handle model choice
@spaces.GPU
def generate(
    model_choice: str,
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    num_inference_steps: int = 30,
    num_images: int = 1,
    zip_images: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    if model_choice == "flux.1-dev-realism":
        return generate_dev(
            prompt=prompt,
            negative_prompt=negative_prompt,
            use_negative_prompt=use_negative_prompt,
            seed=seed,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            randomize_seed=randomize_seed,
            style_name=style_name,
            num_inference_steps=num_inference_steps,
            num_images=num_images,
            zip_images=zip_images,
            progress=progress,
        )
    elif model_choice == "flux.1-krea-dev":
        return generate_krea(
            prompt=prompt,
            seed=seed,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            randomize_seed=randomize_seed,
            num_inference_steps=num_inference_steps,
            num_images=num_images,
            zip_images=zip_images,
            progress=progress,
        )
    else:
        raise ValueError("Invalid model choice")

# Examples (tailored for flux.1-dev-realism)
examples = [
    "High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
    "Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
    "Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights."
]

css = '''
.gradio-container {
    max-width: 590px !important;
    margin: 0 auto !important;
}
h1 {
    text-align: center;
}
footer {
    visibility: hidden;
}
'''

# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button = gr.Button("Run", scale=0, variant="primary")
    result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
    
    with gr.Row():
    # Model choice radio button above additional options
        model_choice = gr.Radio(
            choices=["flux.1-krea-dev", "flux.1-dev-realism"],
            label="Select Model",
            value="flux.1-krea-dev"
        )
    
    with gr.Accordion("Additional Options", open=False):
        style_selection = gr.Dropdown(
            label="Quality Style (for flux.1-dev-realism only)",
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            interactive=True,
        )
        use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
        guidance_scale = gr.Slider(
            label="Guidance Scale",
            minimum=0.1,
            maximum=20.0,
            step=0.1,
            value=4.5,
        )
        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=40,
            step=1,
            value=28,
        )
        num_images = gr.Slider(
            label="Number of images",
            minimum=1,
            maximum=5,
            step=1,
            value=1,
        )
        zip_images = gr.Checkbox(label="Zip generated images", value=False)
        
        gr.Markdown("### Output Information")
        seed_display = gr.Textbox(label="Seed used", interactive=False)
        generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
        zip_file = gr.File(label="Download ZIP")

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed_display, generation_time, zip_file],
        fn=generate,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            model_choice,
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
            num_inference_steps,
            num_images,
            zip_images,
        ],
        outputs=[result, seed_display, generation_time, zip_file],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=120).launch(mcp_server=True, ssr_mode=False, show_error=True)