Spaces:
Restarting
on
Zero
Restarting
on
Zero
File size: 17,979 Bytes
2230883 8b14dd2 ee317af ea8b158 8b14dd2 ea8b158 8b14dd2 8fc2985 ea8b158 8a2ba41 ea8b158 b4ff4ab 571721c ea8b158 8b14dd2 65928b6 8b14dd2 65928b6 8b14dd2 ea8b158 65928b6 ea8b158 20346f9 c35e231 ea8b158 8b14dd2 ea8b158 ee317af ea8b158 8a2ba41 ea8b158 8a2ba41 8b14dd2 ddfc2a2 8a2ba41 ddfc2a2 8a2ba41 ea8b158 3c8af7a ea8b158 8a2ba41 ddfc2a2 8a2ba41 ddfc2a2 8fc2985 65928b6 8a2ba41 ddfc2a2 8b14dd2 8a2ba41 ddfc2a2 8fc2985 ea8b158 8a2ba41 ddfc2a2 5663d15 8a2ba41 ddfc2a2 8fc2985 ddfc2a2 8a2ba41 8fc2985 8a2ba41 8fc2985 8a2ba41 ea8b158 b4ff4ab ea8b158 8b14dd2 bc33af7 8b14dd2 65928b6 8b14dd2 891571d 46d3028 891571d 8b14dd2 891571d 8b14dd2 cbc2b17 ea8b158 7db566e 571721c 8b14dd2 ddfc2a2 46d3028 ea8b158 0225ba5 ea8b158 210594e b4ff4ab 210594e b4ff4ab 210594e ea8b158 c35e231 ddfc2a2 ea8b158 ddfc2a2 ea8b158 ddfc2a2 5db754f 8b14dd2 ddfc2a2 5db754f 8b14dd2 e5cf0c8 ddfc2a2 e5cf0c8 b4ff4ab ddfc2a2 5db754f ddfc2a2 8fc2985 6a0e816 8fc2985 c35e231 27bd1d2 c35e231 ddfc2a2 8fc2985 ddfc2a2 c35e231 ddfc2a2 c35e231 8b14dd2 ea8b158 8b14dd2 ddfc2a2 8b14dd2 ddfc2a2 8fc2985 8b14dd2 8fc2985 8b14dd2 dc7f40f ee317af 2cd68a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
import random
import uuid
from typing import Tuple, Union, List, Optional, Any, Dict
import numpy as np
import time
import zipfile
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
# Description for the app
DESCRIPTION = """## flux realism hpc/."""
# Helper functions
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load pipelines for both models
# Flux.1-dev-realism
base_model_dev = "black-forest-labs/FLUX.1-dev"
pipe_dev = DiffusionPipeline.from_pretrained(base_model_dev, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"
pipe_dev.load_lora_weights(lora_repo)
pipe_dev.to("cuda")
# Flux.1-krea
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe_krea = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", torch_dtype=dtype, vae=taef1).to(device)
# Define the flux_pipe_call_that_returns_an_iterable_of_images for flux.1-krea
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
# Helper functions for flux.1-krea
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Styles for flux.1-dev-realism
style_list = [
{"name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": ""},
{"name": "Style Zero", "prompt": "{prompt}", "negative_prompt": ""},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n
# Generation function for flux.1-dev-realism
@spaces.GPU
def generate_dev(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
num_inference_steps: int = 30,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
if use_negative_prompt:
final_negative_prompt = style_negative_prompt + " " + negative_prompt
else:
final_negative_prompt = style_negative_prompt
final_negative_prompt = final_negative_prompt.strip()
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device="cuda").manual_seed(seed)
start_time = time.time()
images = pipe_dev(
prompt=positive_prompt,
negative_prompt=final_negative_prompt if final_negative_prompt else None,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
output_type="pil",
).images
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Generation function for flux.1-krea
@spaces.GPU
def generate_krea(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 4.5,
randomize_seed: bool = False,
num_inference_steps: int = 28,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
start_time = time.time()
images = []
for _ in range(num_images):
final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
))[-1] # Take the final image only
images.append(final_img)
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Main generation function to handle model choice
@spaces.GPU
def generate(
model_choice: str,
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
num_inference_steps: int = 30,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if model_choice == "flux.1-dev-realism":
return generate_dev(
prompt=prompt,
negative_prompt=negative_prompt,
use_negative_prompt=use_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
style_name=style_name,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
elif model_choice == "flux.1-krea-dev":
return generate_krea(
prompt=prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
else:
raise ValueError("Invalid model choice")
# Examples (tailored for flux.1-dev-realism)
examples = [
"High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
"Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
"Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights."
]
css = '''
.gradio-container {
max-width: 590px !important;
margin: 0 auto !important;
}
h1 {
text-align: center;
}
footer {
visibility: hidden;
}
'''
# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
with gr.Row():
# Model choice radio button above additional options
model_choice = gr.Radio(
choices=["flux.1-krea-dev", "flux.1-dev-realism"],
label="Select Model",
value="flux.1-krea-dev"
)
with gr.Accordion("Additional Options", open=False):
style_selection = gr.Dropdown(
label="Quality Style (for flux.1-dev-realism only)",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
interactive=True,
)
use_negative_prompt = gr.Checkbox(label="Use negative prompt (for flux.1-dev-realism only)", value=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=28,
)
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=5,
step=1,
value=1,
)
zip_images = gr.Checkbox(label="Zip generated images", value=False)
gr.Markdown("### Output Information")
seed_display = gr.Textbox(label="Seed used", interactive=False)
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
zip_file = gr.File(label="Download ZIP")
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed_display, generation_time, zip_file],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
model_choice,
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
style_selection,
num_inference_steps,
num_images,
zip_images,
],
outputs=[result, seed_display, generation_time, zip_file],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=120).launch(mcp_server=True, ssr_mode=False, show_error=True) |