import gradio as gr from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer from transformers.image_utils import load_image from threading import Thread import time import torch import spaces # Define model options MODEL_OPTIONS = { "Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct", "Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", "Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct", "Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct" } # Global variables for model and processor model = None processor = None # Function to load the selected model def load_model(model_name): global model, processor model_id = MODEL_OPTIONS[model_name] print(f"Loading model: {model_id}") processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) model = Qwen2VLForConditionalGeneration.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() print(f"Model {model_id} loaded successfully!") return f"Model {model_name} loaded!" @spaces.GPU def model_inference(input_dict, history, model_choice): global model, processor # Load the selected model if not already loaded if model is None or processor is None: load_model(model_choice) text = input_dict["text"] files = input_dict["files"] # Load images if provided if len(files) > 1: images = [load_image(image) for image in files] elif len(files) == 1: images = [load_image(files[0])] else: images = [] # Validate input if text == "" and not images: gr.Error("Please input a query and optionally image(s).") return if text == "" and images: gr.Error("Please input a text query along with the image(s).") return # Prepare messages for the model messages = [ { "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ], } ] # Apply chat template and process inputs prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[prompt], images=images if images else None, return_tensors="pt", padding=True, ).to("cuda") # Set up streamer for real-time output streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) # Start generation in a separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Stream the output buffer = "" yield "Thinking..." for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer # Example inputs examples = [ [{"text": "Describe the document?", "files": ["example_images/document.jpg"]}], [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], [{"text": "What does this say?", "files": ["example_images/math.jpg"]}], [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], ] # Gradio interface with gr.Blocks() as demo: gr.Markdown("# **Qwen2.5-VL-3B-Instruct**") # Model selection dropdown model_choice = gr.Dropdown( label="Model Selection", choices=list(MODEL_OPTIONS.keys()), value="Latex OCR" ) # Load model button load_model_btn = gr.Button("Load Model") load_model_output = gr.Textbox(label="Model Load Status") # Chat interface chat_interface = gr.ChatInterface( fn=model_inference, description="Interact with the selected Qwen2-VL model.", examples=examples, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, cache_examples=False, additional_inputs=[model_choice] # Pass model_choice as an additional input ) # Link the load model button to the load_model function load_model_btn.click(load_model, inputs=model_choice, outputs=load_model_output) # Launch the demo demo.launch(debug=True)