prithivMLmods's picture
upload app (#3)
1f01cb4 verified
import os
import time
import threading
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
Qwen2VLForConditionalGeneration,
Glm4vForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from qwen_vl_utils import process_vision_info
# Constants for text generation
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 3584
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-3B-Instruct-abliterated
MODEL_ID_X = "huihui-ai/Qwen2.5-VL-3B-Instruct-abliterated"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Megalodon-OCR-Sync-0713
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load GLM-4.1V-9B-Thinking
MODEL_ID_S = "zai-org/GLM-4.1V-9B-Thinking"
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
model_s = Glm4vForConditionalGeneration.from_pretrained(
MODEL_ID_S,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load DeepEyes-7B
MODEL_ID_Y = "ChenShawn/DeepEyes-7B"
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Y,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generate responses using the selected model for image input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Megalodon-OCR-Sync-0713":
processor = processor_t
model = model_t
elif model_name == "GLM-4.1V-9B-Thinking":
processor = processor_s
model = model_s
elif model_name == "DeepEyes-7B-Thinking":
processor = processor_y
model = model_y
elif model_name == "Qwen2.5-VL-3B-Instruct-abliterated":
processor = processor_x
model = model_x
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generate responses using the selected model for video input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "Megalodon-OCR-Sync-0713":
processor = processor_t
model = model_t
elif model_name == "GLM-4.1V-9B-Thinking":
processor = processor_s
model = model_s
elif model_name == "DeepEyes-7B-Thinking":
processor = processor_y
model = model_y
elif model_name == "Qwen2.5-VL-3B-Instruct-abliterated":
processor = processor_x
model = model_x
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["explain the movie shot in detail.", "images/5.jpg"],
["convert this page to doc [text] precisely for markdown.", "images/1.png"],
["convert this page to doc [table] precisely for markdown.", "images/2.png"],
["explain the movie shot in detail.", "images/3.png"],
["fill the correct numbers.", "images/4.png"]
]
video_examples = [
["explain the video in detail.", "videos/b.mp4"],
["explain the ad video in detail.", "videos/a.mp4"]
]
# Updated CSS with model choice highlighting
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Multimodal VLM OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.md)")
model_choice = gr.Radio(
choices=["Camel-Doc-OCR-062825", "GLM-4.1V-9B-Thinking", "Megalodon-OCR-Sync-0713", "DeepEyes-7B-Thinking", "Qwen2.5-VL-3B-Instruct-abliterated"],
label="Select Model",
value="Camel-Doc-OCR-062825"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR-Comparator/discussions)")
gr.Markdown("> Camel-Doc-OCR-062825 and Megalodon-OCR-Sync-0713 are both fine-tuned versions of the Qwen2.5-VL series focused on document retrieval, content extraction, analysis recognition, and excelling in OCR and visual document analysis tasks for structured and unstructured content—Camel-Doc-OCR-062825 leveraging the Qwen2.5-VL-7B-Instruct as its base, while Megalodon-OCR-Sync-0713 uses Qwen2.5-VL-3B-Instruct and is especially trained on diverse captioning datasets.")
gr.Markdown("> GLM-4.1V-9B-Thinking is a vision-language model (VLM) based on the GLM-4-9B-0414 foundation, with a strong emphasis on advanced reasoning capabilities, chain-of-thought inference, and robust bilingual (Chinese/English) performance on complex multimodal benchmarks.")
gr.Markdown("> DeepEyes-7B stands out for its agentic reinforcement learning approach, focusing on thinking with images for better visual reasoning, math problem-solving, and mitigating hallucination using Qwen2.5-VL-7B-Instruct as its foundation. Finally, Qwen2.5-VL-3B-Instruct-abliterated is part of the Qwen2.5-VL family, known for its versatile vision-language understanding and generation, serving as the foundational architecture for several of these fine-tuned vision-language and OCR models.")
# Define the submit button actions
image_submit.click(fn=generate_image,
inputs=[
model_choice, image_query, image_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
video_submit.click(fn=generate_video,
inputs=[
model_choice, video_query, video_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)