Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import time | |
import threading | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
Qwen2VLForConditionalGeneration, | |
Glm4vForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from qwen_vl_utils import process_vision_info | |
# Constants for text generation | |
MAX_MAX_NEW_TOKENS = 4096 | |
DEFAULT_MAX_NEW_TOKENS = 3584 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load Camel-Doc-OCR-062825 | |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load Qwen2.5-VL-3B-Instruct-abliterated | |
MODEL_ID_X = "huihui-ai/Qwen2.5-VL-3B-Instruct-abliterated" | |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_X, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load Megalodon-OCR-Sync-0713 | |
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load GLM-4.1V-9B-Thinking | |
MODEL_ID_S = "zai-org/GLM-4.1V-9B-Thinking" | |
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True) | |
model_s = Glm4vForConditionalGeneration.from_pretrained( | |
MODEL_ID_S, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load DeepEyes-7B | |
MODEL_ID_Y = "ChenShawn/DeepEyes-7B" | |
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True) | |
model_y = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_Y, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
def downsample_video(video_path): | |
""" | |
Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def generate_image(model_name: str, text: str, image: Image.Image, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generate responses using the selected model for image input. | |
""" | |
if model_name == "Camel-Doc-OCR-062825": | |
processor = processor_m | |
model = model_m | |
elif model_name == "Megalodon-OCR-Sync-0713": | |
processor = processor_t | |
model = model_t | |
elif model_name == "GLM-4.1V-9B-Thinking": | |
processor = processor_s | |
model = model_s | |
elif model_name == "DeepEyes-7B-Thinking": | |
processor = processor_y | |
model = model_y | |
elif model_name == "Qwen2.5-VL-3B-Instruct-abliterated": | |
processor = processor_x | |
model = model_x | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if image is None: | |
yield "Please upload an image.", "Please upload an image." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer, buffer | |
def generate_video(model_name: str, text: str, video_path: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generate responses using the selected model for video input. | |
""" | |
if model_name == "Camel-Doc-OCR-062825": | |
processor = processor_m | |
model = model_m | |
elif model_name == "Megalodon-OCR-Sync-0713": | |
processor = processor_t | |
model = model_t | |
elif model_name == "GLM-4.1V-9B-Thinking": | |
processor = processor_s | |
model = model_s | |
elif model_name == "DeepEyes-7B-Thinking": | |
processor = processor_y | |
model = model_y | |
elif model_name == "Qwen2.5-VL-3B-Instruct-abliterated": | |
processor = processor_x | |
model = model_x | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if video_path is None: | |
yield "Please upload a video.", "Please upload a video." | |
return | |
frames = downsample_video(video_path) | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": text}]} | |
] | |
for frame in frames: | |
image, timestamp = frame | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "image": image}) | |
inputs = processor.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer, buffer | |
# Define examples for image and video inference | |
image_examples = [ | |
["explain the movie shot in detail.", "images/5.jpg"], | |
["convert this page to doc [text] precisely for markdown.", "images/1.png"], | |
["convert this page to doc [table] precisely for markdown.", "images/2.png"], | |
["explain the movie shot in detail.", "images/3.png"], | |
["fill the correct numbers.", "images/4.png"] | |
] | |
video_examples = [ | |
["explain the video in detail.", "videos/b.mp4"], | |
["explain the ad video in detail.", "videos/a.mp4"] | |
] | |
# Updated CSS with model choice highlighting | |
css = """ | |
.submit-btn { | |
background-color: #2980b9 !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #3498db !important; | |
} | |
.canvas-output { | |
border: 2px solid #4682B4; | |
border-radius: 10px; | |
padding: 20px; | |
} | |
""" | |
# Create the Gradio Interface | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown("# **[Multimodal VLM OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.TabItem("Image Inference"): | |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
image_upload = gr.Image(type="pil", label="Image") | |
image_submit = gr.Button("Submit", elem_classes="submit-btn") | |
gr.Examples( | |
examples=image_examples, | |
inputs=[image_query, image_upload] | |
) | |
with gr.TabItem("Video Inference"): | |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") | |
video_upload = gr.Video(label="Video") | |
video_submit = gr.Button("Submit", elem_classes="submit-btn") | |
gr.Examples( | |
examples=video_examples, | |
inputs=[video_query, video_upload] | |
) | |
with gr.Accordion("Advanced options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) | |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) | |
with gr.Column(): | |
with gr.Column(elem_classes="canvas-output"): | |
gr.Markdown("## Output") | |
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2) | |
with gr.Accordion("(Result.md)", open=False): | |
markdown_output = gr.Markdown(label="(Result.md)") | |
model_choice = gr.Radio( | |
choices=["Camel-Doc-OCR-062825", "GLM-4.1V-9B-Thinking", "Megalodon-OCR-Sync-0713", "DeepEyes-7B-Thinking", "Qwen2.5-VL-3B-Instruct-abliterated"], | |
label="Select Model", | |
value="Camel-Doc-OCR-062825" | |
) | |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR-Comparator/discussions)") | |
gr.Markdown("> Camel-Doc-OCR-062825 and Megalodon-OCR-Sync-0713 are both fine-tuned versions of the Qwen2.5-VL series focused on document retrieval, content extraction, analysis recognition, and excelling in OCR and visual document analysis tasks for structured and unstructured content—Camel-Doc-OCR-062825 leveraging the Qwen2.5-VL-7B-Instruct as its base, while Megalodon-OCR-Sync-0713 uses Qwen2.5-VL-3B-Instruct and is especially trained on diverse captioning datasets.") | |
gr.Markdown("> GLM-4.1V-9B-Thinking is a vision-language model (VLM) based on the GLM-4-9B-0414 foundation, with a strong emphasis on advanced reasoning capabilities, chain-of-thought inference, and robust bilingual (Chinese/English) performance on complex multimodal benchmarks.") | |
gr.Markdown("> DeepEyes-7B stands out for its agentic reinforcement learning approach, focusing on thinking with images for better visual reasoning, math problem-solving, and mitigating hallucination using Qwen2.5-VL-7B-Instruct as its foundation. Finally, Qwen2.5-VL-3B-Instruct-abliterated is part of the Qwen2.5-VL family, known for its versatile vision-language understanding and generation, serving as the foundational architecture for several of these fine-tuned vision-language and OCR models.") | |
# Define the submit button actions | |
image_submit.click(fn=generate_image, | |
inputs=[ | |
model_choice, image_query, image_upload, | |
max_new_tokens, temperature, top_p, top_k, | |
repetition_penalty | |
], | |
outputs=[output, markdown_output]) | |
video_submit.click(fn=generate_video, | |
inputs=[ | |
model_choice, video_query, video_upload, | |
max_new_tokens, temperature, top_p, top_k, | |
repetition_penalty | |
], | |
outputs=[output, markdown_output]) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |