prithivMLmods's picture
Update app.py
e695261 verified
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoModel,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Qwen2.5-VL-7B-Instruct
MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-3B-Instruct
MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Qwen2.5-VL-7B-Abliterated-Caption-it
MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Q,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load YannQi/X-VL-4B
MODEL_ID_I = "YannQi/X-VL-4B"
processor_i= AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
model_i = AutoModel.from_pretrained(
MODEL_ID_I,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
Yields raw text and Markdown-formatted text.
"""
if model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
processor = processor_q
model = model_q
elif model_name == "X-VL-4B":
processor = processor_i
model = model_i
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
Yields raw text and Markdown-formatted text.
"""
if model_name == "Qwen2.5-VL-7B-Instruct":
processor = processor_m
model = model_m
elif model_name == "Qwen2.5-VL-3B-Instruct":
processor = processor_x
model = model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it":
processor = processor_q
model = model_q
elif model_name == "X-VL-4B":
processor = processor_i
model = model_i
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["Provide a detailed caption for the image..", "images/A.jpg"],
["Explain the pie-chart in detail.", "images/2.jpg"],
["Jsonify Data.", "images/1.jpg"],
]
video_examples = [
["Explain the ad in detail", "videos/1.mp4"],
["Identify the main actions in the video", "videos/2.mp4"],
["Identify the main scenes in the video", "videos/3.mp4"]
]
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Qwen2.5-VL](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output", interactive=False, lines=2, scale=2)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown()
model_choice = gr.Radio(
choices=["Qwen2.5-VL-7B-Instruct", "Qwen2.5-VL-3B-Instruct", "X-VL-4B", "Qwen2.5-VL-7B-Abliterated-Caption-it"],
label="Select Model",
value="Qwen2.5-VL-7B-Instruct"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions)")
gr.Markdown("> [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct): The Qwen2.5-VL-7B-Instruct model is a multimodal AI model developed by Alibaba Cloud that excels at understanding both text and images. It's a Vision-Language Model (VLM) designed to handle various visual understanding tasks, including image understanding, video analysis, and even multilingual support.")
gr.Markdown("> [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct): Qwen2.5-VL-3B-Instruct is an instruction-tuned vision-language model from Alibaba Cloud, built upon the Qwen2-VL series. It excels at understanding and generating text related to both visual and textual inputs, making it capable of tasks like image captioning, visual question answering, and object localization. The model also supports long video understanding and structured data extraction")
gr.Markdown("> [Qwen2.5-VL-7B-Abliterated-Caption-it](prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it): Qwen2.5-VL-7B-Abliterated-Caption-it is a fine-tuned version of Qwen2.5-VL-7B-Instruct, optimized for Abliterated Captioning / Uncensored Captioning. This model excels at generating detailed, context-rich, and high-fidelity captions across diverse image categories and variational aspect ratios, offering robust visual understanding without filtering or censorship.")
gr.Markdown("> [X-VL-4B](huggingface.co/YannQi/X-VL-4B): X-VL-4B, a multimodal large language model designed to achieve adaptive multimodal reasoning—dynamically choosing between step-by-step thinking and direct response generation based on task complexity. This capability enables X-VL-4B to deliver high-quality responses while significantly improving inference efficiency and reducing computational costs")
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
image_submit.click(
fn=generate_image,
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
video_submit.click(
fn=generate_video,
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output]
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)