Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,8 @@ from transformers import (
|
|
19 |
Qwen2VLForConditionalGeneration,
|
20 |
AutoProcessor,
|
21 |
AutoTokenizer,
|
|
|
|
|
22 |
TextIteratorStreamer,
|
23 |
)
|
24 |
|
@@ -31,10 +33,11 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
31 |
|
32 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
33 |
|
34 |
-
# Load
|
35 |
-
MODEL_ID_M = "
|
36 |
-
processor_m =
|
37 |
-
|
|
|
38 |
MODEL_ID_M,
|
39 |
trust_remote_code=True,
|
40 |
torch_dtype=torch.float16
|
@@ -58,16 +61,6 @@ model_k = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
58 |
torch_dtype=torch.float16
|
59 |
).to(device).eval()
|
60 |
|
61 |
-
# Load Imgscope-OCR-2B-0527
|
62 |
-
MODEL_ID_Y = "prithivMLmods/Imgscope-OCR-2B-0527"
|
63 |
-
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
|
64 |
-
model_y = Qwen2VLForConditionalGeneration.from_pretrained(
|
65 |
-
MODEL_ID_Y,
|
66 |
-
trust_remote_code=True,
|
67 |
-
torch_dtype=torch.float16
|
68 |
-
).to(device).eval()
|
69 |
-
|
70 |
-
|
71 |
def downsample_video(video_path):
|
72 |
"""
|
73 |
Downsamples the video to evenly spaced frames.
|
@@ -99,7 +92,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
99 |
"""
|
100 |
Generates responses using the selected model for image input.
|
101 |
"""
|
102 |
-
if model_name == "
|
103 |
processor = processor_m
|
104 |
model = model_m
|
105 |
elif model_name == "SpaceThinker-3B":
|
@@ -108,9 +101,6 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
108 |
elif model_name == "coreOCR-7B-050325-preview":
|
109 |
processor = processor_k
|
110 |
model = model_k
|
111 |
-
elif model_name == "Imgscope-OCR-2B-0527":
|
112 |
-
processor = processor_y
|
113 |
-
model = model_y
|
114 |
else:
|
115 |
yield "Invalid model selected."
|
116 |
return
|
@@ -156,7 +146,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
156 |
"""
|
157 |
Generates responses using the selected model for video input.
|
158 |
"""
|
159 |
-
if model_name == "
|
160 |
processor = processor_m
|
161 |
model = model_m
|
162 |
elif model_name == "SpaceThinker-3B":
|
@@ -165,9 +155,6 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
165 |
elif model_name == "coreOCR-7B-050325-preview":
|
166 |
processor = processor_k
|
167 |
model = model_k
|
168 |
-
elif model_name == "Imgscope-OCR-2B-0527":
|
169 |
-
processor = processor_y
|
170 |
-
model = model_y
|
171 |
else:
|
172 |
yield "Invalid model selected."
|
173 |
return
|
@@ -269,7 +256,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
269 |
with gr.Column():
|
270 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
271 |
model_choice = gr.Radio(
|
272 |
-
choices=["
|
273 |
label="Select Model",
|
274 |
value="SkyCaptioner-V1"
|
275 |
)
|
|
|
19 |
Qwen2VLForConditionalGeneration,
|
20 |
AutoProcessor,
|
21 |
AutoTokenizer,
|
22 |
+
AutoModel,
|
23 |
+
AutoImageProcessor,
|
24 |
TextIteratorStreamer,
|
25 |
)
|
26 |
|
|
|
33 |
|
34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
|
36 |
+
# Load Llama-3.1-Nemotron-Nano-VL-8B-V1
|
37 |
+
MODEL_ID_M = "nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1"
|
38 |
+
processor_m = AutoImageProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
39 |
+
tokenizer_m = AutoTokenizer.from_pretrained(MODEL_ID_M)
|
40 |
+
model_m = AutoModel.from_pretrained(
|
41 |
MODEL_ID_M,
|
42 |
trust_remote_code=True,
|
43 |
torch_dtype=torch.float16
|
|
|
61 |
torch_dtype=torch.float16
|
62 |
).to(device).eval()
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def downsample_video(video_path):
|
65 |
"""
|
66 |
Downsamples the video to evenly spaced frames.
|
|
|
92 |
"""
|
93 |
Generates responses using the selected model for image input.
|
94 |
"""
|
95 |
+
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
96 |
processor = processor_m
|
97 |
model = model_m
|
98 |
elif model_name == "SpaceThinker-3B":
|
|
|
101 |
elif model_name == "coreOCR-7B-050325-preview":
|
102 |
processor = processor_k
|
103 |
model = model_k
|
|
|
|
|
|
|
104 |
else:
|
105 |
yield "Invalid model selected."
|
106 |
return
|
|
|
146 |
"""
|
147 |
Generates responses using the selected model for video input.
|
148 |
"""
|
149 |
+
if model_name == "Llama-3.1-Nemotron-Nano-VL-8B-V1":
|
150 |
processor = processor_m
|
151 |
model = model_m
|
152 |
elif model_name == "SpaceThinker-3B":
|
|
|
155 |
elif model_name == "coreOCR-7B-050325-preview":
|
156 |
processor = processor_k
|
157 |
model = model_k
|
|
|
|
|
|
|
158 |
else:
|
159 |
yield "Invalid model selected."
|
160 |
return
|
|
|
256 |
with gr.Column():
|
257 |
output = gr.Textbox(label="Output", interactive=False, lines=2, scale=2)
|
258 |
model_choice = gr.Radio(
|
259 |
+
choices=["Llama-3.1-Nemotron-Nano-VL-8B-V1", "SpaceThinker-3B", "coreOCR-7B-050325-preview"],
|
260 |
label="Select Model",
|
261 |
value="SkyCaptioner-V1"
|
262 |
)
|