File size: 1,905 Bytes
5cf5ff6 2090788 5cf5ff6 3517f34 5cf5ff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
title: Kashmiri Streaming Asr Zipformer
emoji: π»
colorFrom: purple
colorTo: gray
sdk: docker
pinned: false
short_description: 'Kashmiri streaming ASR with Zipformer '
---
# ποΈ Real-Time Kashmiri Streaming ASR (FastAPI + Sherpa-ONNX)
This project demonstrates a real-time speech-to-text (ASR) web application with:
* ποΈ Hugging Face Deployment taken from [Luigi](https://huggingface.co/spaces/Luigi/Streaming-Zipformer)
* π§ [Sherpa-ONNX](https://github.com/k2-fsa/sherpa-onnx) streaming Zipformer model
* π FastAPI backend with WebSocket support
* βοΈ Docker-compatible deployment (CPU-only) on Hugging Face Spaces
## π€ Training
* Model: [Zipformer Small](https://github.com/k2-fsa/icefall)
* Dataset: [IndicVoices](https://huggingface.co/datasets/ai4bharat/IndicVoices)
* WER: 36%
## π§ͺ Local Development
1. **Install dependencies**
```bash
pip install -r requirements.txt
```
2. **Run the app locally**
```bash
uvicorn app.main:app --reload --host 0.0.0.0 --port 8501
```
Open [http://localhost:8501](http://localhost:8501) in your browser.
[https://k2-fsa.github.io/sherpa/ncnn/endpoint.html](https://k2-fsa.github.io/sherpa/ncnn/endpoint.html)
## π Project Structure
```
.
βββ app
β βββ main.py
β βββ asr.py
β βββ model parts
βββ All Model parts here (encoder, decoder, joiner, tokens)
βββ index.html
βββ requirements.txt
βββ Dockerfile
βββ README.md
```
## π§ Credits
* [Sherpa-ONNX](https://github.com/k2-fsa/sherpa-onnx)
* [OpenCC](https://github.com/BYVoid/OpenCC)
* [FastAPI](https://fastapi.tiangolo.com/)
* [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces)
* [AI4Bharat](https://ai4bharat.iitm.ac.in/)
* [Icefall-K2](https://github.com/k2-fsa/icefall)
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|