File size: 1,274 Bytes
f2b7d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0540c
f2b7d66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit.processor import IndicProcessor

src_lang, tgt_lang = "kas_Arab", "eng_Latn"
model_name = "ai4bharat/indictrans2-indic-en-dist-200M"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

model = AutoModelForSeq2SeqLM.from_pretrained(
    model_name, 
    trust_remote_code=True, 
    torch_dtype=torch.float16,
)
ip = IndicProcessor(inference=True)

def tranlate_ks(text: str):
    batch = ip.preprocess_batch(
        [text],
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    inputs = tokenizer(
        batch,
        truncation=True,
        padding="longest",
        return_tensors="pt",
    )
    with torch.no_grad():
        generated_tokens = model.generate(
            **inputs,
            use_cache=True,
            min_length=0,
            max_length=256,
            num_beams=5,
            num_return_sequences=1,
        )
    generated_tokens = tokenizer.batch_decode(
        generated_tokens,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )
    translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)
    print('[TRANSLATION] Done . . .')
    return translations[0]