import h5py
import gradio as gr
from tensorflow.keras.utils import img_to_array, load_img
from keras.models import load_model
import numpy as np
from deep_translator import GoogleTranslator
# Load the pre-trained model from the local path
model_path = 'sugar.h5'
# Check if the model is loading correctly
try:
with h5py.File(model_path, 'r+') as f:
if 'groups' in f.attrs['model_config']:
model_config_string = f.attrs['model_config']
model_config_string = model_config_string.replace('"groups": 1,', '')
model_config_string = model_config_string.replace('"groups": 1}', '}')
f.attrs['model_config'] = model_config_string.encode('utf-8')
model = load_model(model_path)
print("Model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
def predict_disease(image_file, model, all_labels, target_language):
try:
# Load and preprocess the image
print(f"Received image file: {image_file}")
img = load_img(image_file, target_size=(224, 224)) # Ensure image size matches model input
img_array = img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
img_array = img_array / 255.0 # Normalize the image
# Predict the class
predictions = model.predict(img_array)
confidence_scores = predictions[0]
max_confidence = np.max(confidence_scores)
confidence_threshold = 0.98 # Require at least 98% confidence
# Check if the confidence is too low
if max_confidence < confidence_threshold:
print(f"Prediction confidence ({max_confidence:.2f}) is too low.")
return f"""
The uploaded image does not appear to be a sugarcane plant or has low clarity.
Please upload a clearer image of a sugarcane plant.
"""
# Get the predicted class index
predicted_class = np.argmax(confidence_scores)
# Get the predicted class label
predicted_label = all_labels[predicted_class]
# Check for irrelevant or non-sugarcane-related predictions
if predicted_label not in all_labels:
print("The image does not match sugarcane diseases.")
return f"""
The uploaded image does not match any sugarcane diseases.
Please ensure you upload a sugarcane plant image.
"""
# Translate the predicted label
translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label)
# Provide pesticide information based on the predicted label
# (Use your existing logic here for each disease case)
# Example for a matched class:
if predicted_label == 'Sugarcane Yellow':
pesticide_info = """
Sugarcane Yellow
PESTICIDES TO BE USED:
- 1. Insecticidal Soap
- 2. Pyrethroids
- 3. Imidacloprid
- 4. Bacillus thuringiensis
- 5. Spinosad
* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
"""
elif predicted_label == 'Sugarcane Rust':
pesticide_info = """
Sugarcane Rust
PESTICIDES TO BE USED:
- 1. Triadimefon
- 2. Chlorothalonil
- 3. Tebuconazole
- 4. Propiconazole
* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
"""
elif predicted_label == 'Sugarcane RedRot':
pesticide_info = """
Sugarcane RedRot
PESTICIDES TO BE USED:
- 1. Mancozeb
- 2. Chlorothalonil
- 3. Tebuconazole
- 4. Carbendazim
* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
"""
elif predicted_label == 'Sugarcane Mosaic':
pesticide_info = """
Sugarcane Mosaic
PESTICIDES TO BE USED:
- 1. Horticultural Oil
- 2. Spinosad
- 3. Pyrethrin
- 4. Neem Oil
- 5. Imidacloprid
* * * IMPORTANT NOTE * * *
Be sure to follow local regulations and guidelines for application
"""
elif predicted_label == 'Sugarcane Healthy':
pesticide_info = """Sugarcane Healthy
No pesticides needed"""
else:
pesticide_info = 'No pesticide information available.'
# Translate pesticide info to the selected language
translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info)
# Return translated label and pesticide information
return f"{translated_pesticide_info}"
except Exception as e:
print(f"Error during prediction: {e}")
return f"Error: {e}
"
# List of class labels
all_labels = [
'Sugarcane Yellow',
'Sugarcane Rust',
'Sugarcane RedRot','Sugarcane Mosaic',
'Sugarcane Healthy'
]
# Language codes and their full names (display full names in dropdown)
language_choices = {
'hi': 'Hindi',
'te': 'Telugu',
'en': 'English',
'ml': 'Malayalam',
'ta': 'Tamil',
'bn': 'Bengali',
'gu': 'Gujarati',
'kn': 'Kannada',
'mr': 'Marathi'
}
# Mapping full names back to their corresponding language code
full_to_code = {value: key for key, value in language_choices.items()}
# Create a dropdown of full language names, using the full name in the UI
languages = list(language_choices.values()) # List of full language names
# Define the Gradio interface
def gradio_predict(image_file, target_language):
# Map full name back to language code for translation
language_code = full_to_code.get(target_language, 'en')
return predict_disease(image_file, model, all_labels, language_code)
# Create the Gradio interface
gr_interface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Image(type="filepath"), # Image input for disease prediction
gr.Dropdown(label="Select language", choices=languages, value='English') # Language selection dropdown with full names
],
outputs="html", # Output will be in HTML (translated text)
title="Sugarcane Disease Predictor",
description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language."
)
# Launch the Gradio app
gr_interface.launch()