Spaces:
Running
Running
File size: 5,781 Bytes
278a64b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Thumbnail Conversion to WebP Format
This document describes the thumbnail conversion process that converts existing JPEG thumbnails to the new WebP format for better compression and quality.
## Overview
The thumbnail conversion system includes:
- **New thumbnail service** with WebP support and max-width-only resizing
- **Conversion script** to update existing images
- **Test script** to verify functionality
- **Docker integration** for automatic conversion on deployment
## Changes Made
### 1. Updated Thumbnail Service (`app/services/thumbnail_service.py`)
- Added `create_resized_image_max_width()` method for max-width-only resizing
- Added WebP format support for thumbnails
- Updated `create_thumbnail()` to use WebP format (300px max width)
- Updated `create_detail_image()` to use JPEG format (800px max width)
### 2. New Image Specifications
| Image Type | Max Width | Format | Quality | Extension | Compression |
|------------|-----------|--------|---------|-----------|-------------|
| **Thumbnail** | 300px | WebP | 80% | `.webp` | method=6, optimize=True |
| **Detail** | 800px | WebP | 85% | `.webp` | method=6, optimize=True |
## Scripts
### 1. Production Conversion Script (`generate_production_thumbnails.py`)
**Purpose**: Converts all existing JPEG thumbnails to WebP format.
**Features**:
- Fetches all images from database
- Identifies images needing conversion (JPEG thumbnails)
- Downloads original images from storage
- Generates new WebP thumbnails using max-width logic
- Uploads new thumbnails and updates database
- Deletes old JPEG thumbnails
- Comprehensive logging and error handling
**Usage**:
```bash
# Run locally (for testing)
cd py_backend
python generate_production_thumbnails.py
# Run in Docker (automatic on deployment)
docker-compose up
```
### 2. Test Script (`test_thumbnail_conversion.py`)
**Purpose**: Verifies thumbnail conversion works before production deployment.
**Features**:
- Tests WebP thumbnail generation
- Tests JPEG detail image generation
- Validates file formats
- Tests database connection
- Safe for local testing
**Usage**:
```bash
cd py_backend
python test_thumbnail_conversion.py
```
## Docker Integration
The Dockerfile has been updated to:
1. Make the conversion script executable
2. Run the script automatically during container startup
3. Log conversion progress
**Startup sequence**:
1. Database migrations
2. Thumbnail conversion
3. FastAPI server startup
## Conversion Process
### What Gets Converted
- β
Images with existing JPEG thumbnails (`.jpg`, `.jpeg`) β WebP
- β
Images with existing JPEG detail images (`.jpg`, `.jpeg`) β WebP
- β Images without thumbnails (skipped)
- β Images with existing WebP thumbnails (skipped)
- β Images with existing WebP detail images (skipped)
### Conversion Steps
1. **Scan Database**: Find all images with JPEG thumbnails/details
2. **Fetch Original**: Download original image from storage
3. **Generate WebP**: Create new WebP thumbnail (300px max width, 80% quality) and detail (800px max width, 85% quality)
4. **Upload**: Upload new WebP images to storage
5. **Update Database**: Update thumbnail_key, thumbnail_sha256, detail_key, detail_sha256
6. **Cleanup**: Delete old JPEG thumbnails and details
7. **Log Progress**: Track conversion statistics
### Error Handling
- Failed conversions are logged but don't stop the process
- Database rollback on errors
- Graceful handling of missing files
- Comprehensive error reporting
## Monitoring
### Log Files
- **Console output**: Real-time progress
- **thumbnail_conversion.log**: Detailed conversion log
- **Docker logs**: Container-level logging
### Conversion Statistics
```
==================================================
THUMBNAIL CONVERSION SUMMARY
==================================================
Images converted to WebP: 150
Images skipped (already WebP or no thumbnail): 25
Images with errors: 2
Total images processed: 177
==================================================
```
## Rollback Plan
If issues occur, you can:
1. **Stop the container** before conversion completes
2. **Restore from backup** if database was modified
3. **Manually revert** by updating thumbnail_key fields
4. **Check logs** for specific error details
## Performance Considerations
### Storage Impact
- WebP images are typically 25-35% smaller than JPEG
- Both thumbnails and detail images use WebP format
- Old JPEG thumbnails and details are deleted after conversion
- Temporary storage needed during conversion process
### Processing Time
- Depends on number of images and image sizes
- Progress logged every 10 images
- Can be monitored via logs
### Memory Usage
- Processes one image at a time
- Minimal memory footprint
- Suitable for containerized environments
## Troubleshooting
### Common Issues
1. **Database Connection Errors**
- Check database credentials
- Verify network connectivity
- Check database server status
2. **Storage Access Errors**
- Verify storage credentials (S3/local)
- Check file permissions
- Verify storage paths
3. **Image Processing Errors**
- Check Pillow installation
- Verify image file integrity
- Check available disk space
### Debug Commands
```bash
# Test thumbnail service
python test_thumbnail_conversion.py
# Check database connection
python -c "from app.database import SessionLocal; db = SessionLocal(); print(db.query(Images).count()); db.close()"
# Check storage access
python -c "from app import storage; print(storage)"
```
## Future Enhancements
Potential improvements:
- **Batch processing** for large datasets
- **Parallel conversion** for faster processing
- **Incremental conversion** for new images only
- **Conversion metrics** dashboard
- **Automatic retry** for failed conversions
|