Spaces:
Running
Running
File size: 13,989 Bytes
1686de5 d25db6b 1686de5 d25db6b ba5edb0 d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b fe5d98f d25db6b d7291ef 1686de5 d25db6b d7291ef d25db6b 1686de5 d25db6b d7291ef d25db6b d7291ef d25db6b d7291ef d25db6b d7291ef d25db6b d7291ef d25db6b d7291ef d25db6b 1686de5 d25db6b 1686de5 d25db6b d7291ef 1686de5 d7291ef 1686de5 d25db6b fe5d98f d25db6b d7291ef 1686de5 d7291ef 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 65933cd fe5d98f 65933cd d25db6b 65933cd d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b 1686de5 d25db6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
"""initial schema + full dynamic country seed (with json schemas & validation)
Revision ID: 0001_initial_schema_and_seed
Revises:
Create Date: 2025-08-01 20:00:00.000000
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
import pycountry
revision = 'b8fc40bfe3c7'
down_revision = None
branch_labels = None
depends_on = None
def _guess_region(alpha2: str) -> str:
AFR = {'DZ','AO','BJ','BW','BF','BI','CM','CV','CF','TD','KM','CG','CD','CI','DJ','EG',
'GQ','ER','SZ','ET','GA','GM','GH','GN','GW','KE','LS','LR','LY','MG','MW','ML',
'MR','MU','YT','MA','MZ','NA','NE','NG','RE','RW','SH','ST','SN','SC','SL','SO',
'ZA','SS','SD','TZ','TG','TN','UG','EH','ZM','ZW'}
AMR = {'US','CA','MX','BR','AR','CO','PE','VE','CL','EC','GT','CU','BO','DO','HT','HN',
'PY','NI','SV','CR','PA','UY','JM','TT','GY','SR','BZ','KY','AG','BS','BB','BM',
'DM','GD','GP','MQ','MS','PR','KN','LC','VC','SX','TC','VI'}
EUR = {'AL','AD','AT','BY','BE','BA','BG','HR','CY','CZ','DK','EE','FI','FR','DE','GI',
'GR','HU','IS','IE','IT','XK','LV','LI','LT','LU','MT','MD','MC','ME','NL','MK',
'NO','PL','PT','RO','RU','SM','RS','SK','SI','ES','SE','CH','TR','UA','GB','VA'}
MENA = {'DZ','BH','EG','IR','IQ','IL','JO','KW','LB','LY','MA','OM','QA','SA','SY','TN',
'AE','YE','PS','SD','EH'}
if alpha2 in MENA:
return 'MENA'
if alpha2 in (AFR - MENA):
return 'AFR'
if alpha2 in AMR:
return 'AMR'
if alpha2 in EUR:
return 'EUR'
return 'APA'
def upgrade():
op.execute('CREATE EXTENSION IF NOT EXISTS pgcrypto;')
op.execute("DROP TABLE IF EXISTS captions CASCADE;")
op.execute("DROP TABLE IF EXISTS image_countries CASCADE;")
op.execute("DROP TABLE IF EXISTS images CASCADE;")
op.execute("DROP TABLE IF EXISTS json_schemas CASCADE;")
op.execute("DROP TABLE IF EXISTS models CASCADE;")
op.execute("DROP TABLE IF EXISTS image_types CASCADE;")
op.execute("DROP TABLE IF EXISTS spatial_references CASCADE;")
op.execute("DROP TABLE IF EXISTS countries CASCADE;")
op.execute("DROP TABLE IF EXISTS event_types CASCADE;")
op.execute("DROP TABLE IF EXISTS regions CASCADE;")
op.execute("DROP TABLE IF EXISTS sources CASCADE;")
op.create_table(
'sources',
sa.Column('s_code', sa.String(), primary_key=True),
sa.Column('label', sa.String(), nullable=False),
)
op.create_table(
'regions',
sa.Column('r_code', sa.String(), primary_key=True),
sa.Column('label', sa.String(), nullable=False),
)
op.create_table(
'event_types',
sa.Column('t_code', sa.String(), primary_key=True),
sa.Column('label', sa.String(), nullable=False),
)
op.create_table(
'countries',
sa.Column('c_code', sa.CHAR(length=2), primary_key=True),
sa.Column('label', sa.String(), nullable=False),
sa.Column('r_code', sa.String(), sa.ForeignKey('regions.r_code'), nullable=False),
)
op.create_table(
'spatial_references',
sa.Column('epsg', sa.String(), primary_key=True),
sa.Column('srid', sa.String(), nullable=False),
sa.Column('proj4', sa.String(), nullable=False),
sa.Column('wkt', sa.String(), nullable=False),
)
op.create_table(
'image_types',
sa.Column('image_type', sa.String(), primary_key=True),
sa.Column('label', sa.String(), nullable=False),
)
op.create_table(
'prompts',
sa.Column('p_code', sa.String(), primary_key=True),
sa.Column('label', sa.Text(), nullable=False),
sa.Column('metadata_instructions', sa.Text(), nullable=True),
)
op.create_table(
'models',
sa.Column('m_code', sa.String(), primary_key=True),
sa.Column('label', sa.String(), nullable=False),
sa.Column('model_type', sa.String(), nullable=False),
sa.Column('is_available', sa.Boolean(), server_default=sa.text('true')),
sa.Column('config', postgresql.JSONB(astext_type=sa.Text()), nullable=True),
)
op.create_table(
'json_schemas',
sa.Column('schema_id', sa.String(), primary_key=True),
sa.Column('title', sa.String(), nullable=False),
sa.Column('schema', postgresql.JSONB(astext_type=sa.Text()), nullable=False),
sa.Column('version', sa.String(), nullable=False),
sa.Column('created_at', sa.TIMESTAMP(timezone=True), server_default=sa.text('NOW()'), nullable=False),
)
op.execute("""
INSERT INTO sources (s_code,label) VALUES
('PDC','PDC'),
('GDACS','GDACS'),
('WFP','WFP ADAM'),
('GFH','Google Flood Hub'),
('GGC','Google GenCast'),
('USGS','USGS'),
('OTHER','Other')
""")
op.execute("""
INSERT INTO regions (r_code,label) VALUES
('AFR','Africa'),
('AMR','Americas'),
('APA','Asia-Pacific'),
('EUR','Europe'),
('MENA','Middle East & N Africa'),
('OTHER','Other')
""")
op.execute("""
INSERT INTO event_types (t_code,label) VALUES
('BIOLOGICAL_EMERGENCY','Biological Emergency'),
('CHEMICAL_EMERGENCY','Chemical Emergency'),
('CIVIL_UNREST','Civil Unrest'),
('COLD_WAVE','Cold Wave'),
('COMPLEX_EMERGENCY','Complex Emergency'),
('CYCLONE','Cyclone'),
('DROUGHT','Drought'),
('EARTHQUAKE','Earthquake'),
('EPIDEMIC','Epidemic'),
('FIRE','Fire'),
('FLOOD','Flood'),
('FLOOD_INSECURITY','Flood Insecurity'),
('HEAT_WAVE','Heat Wave'),
('INSECT_INFESTATION','Insect Infestation'),
('LANDSLIDE','Landslide'),
('OTHER','Other'),
('PLUVIAL','Pluvial'),
('POPULATION_MOVEMENT','Population Movement'),
('RADIOLOGICAL_EMERGENCY','Radiological Emergency'),
('STORM','Storm'),
('TRANSPORTATION_EMERGENCY','Transportation Emergency'),
('TSUNAMI','Tsunami'),
('VOLCANIC_ERUPTION','Volcanic Eruption')
""")
op.execute("""
INSERT INTO spatial_references (epsg, srid, proj4, wkt) VALUES
('4326','4326',
'+proj=longlat +datum=WGS84 +no_defs',
'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]'
),
('3857','3857',
'+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs',
'PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]]'
),
('32633','32633',
'+proj=utm +zone=33 +datum=WGS84 +units=m +no_defs',
'PROJCS["WGS 84 / UTM zone 33N",GEOGCS["WGS 84",DATUM["WGS 84",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]'
),
('32634','32634',
'+proj=utm +zone=34 +datum=WGS84 +units=m +no_defs',
'PROJCS["WGS 84 / UTM zone 34N",GEOGCS["WGS 84",DATUM["WGS 84",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]'
),
('32617','32617',
'+proj=utm +zone=17 +datum=WGS84 +units=m +no_defs',
'PROJCS["WGS 84 / UTM zone 17N",GEOGCS["WGS 84",DATUM["WGS 84",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-81],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1]]'
),
('OTHER','OTHER','','OTHER')
""")
op.execute("""
INSERT INTO image_types (image_type,label) VALUES
('crisis_map','Crisis Map'),
('drone_image','Drone Image')
""")
op.execute("""
INSERT INTO prompts (p_code,label,metadata_instructions) VALUES
('DEFAULT_CRISIS_MAP','Analyze this crisis map and provide a detailed description of the emergency situation, affected areas, and key information shown in the map.','Additionally, extract the following metadata in JSON format. Choose exactly ONE option from each category:
- title: Create a concise title (less than 10 words) for the crisis/event
- source: Choose ONE from: PDC, GDACS, WFP, GFH, GGC, USGS, OTHER
- type: Choose ONE from: BIOLOGICAL_EMERGENCY, CHEMICAL_EMERGENCY, CIVIL_UNREST, COLD_WAVE, COMPLEX_EMERGENCY, CYCLONE, DROUGHT, EARTHQUAKE, EPIDEMIC, FIRE, FLOOD, FLOOD_INSECURITY, HEAT_WAVE, INSECT_INFESTATION, LANDSLIDE, OTHER, PLUVIAL, POPULATION_MOVEMENT, RADIOLOGICAL_EMERGENCY, STORM, TRANSPORTATION_EMERGENCY, TSUNAMI, VOLCANIC_ERUPTION
- countries: List of affected country codes (ISO 2-letter codes like PA, US, etc.)
- epsg: Choose ONE from: 4326, 3857, 32617, 32633, 32634, OTHER. If the map shows a different EPSG code, use "OTHER"
If you cannot find a match, use "OTHER". Return ONLY the JSON object (no markdown formatting) in this exact format:
{
"analysis": "detailed description...",
"metadata": {
"title": "...",
"source": "...",
"type": "...",
"countries": ["..."],
"epsg": "..."
}
}')
""")
op.execute("""
INSERT INTO models (m_code,label,model_type,is_available,config) VALUES
('GPT-4O','GPT-4O','gpt4o',true,'{"provider":"openai","model":"gpt-4o"}'),
('GEMINI15','Gemini 1.5','gemini_pro_vision',true,'{}'),
('CLAUDE3','Claude 3','claude_3_5_sonnet',false,'{}'),
('STUB_MODEL','Stub Model','custom',true,'{"stub": true}'),
('LLAVA_1_5_7B','LLaVA 1.5 7B','custom',true,'{"provider":"huggingface","model_id":"llava-hf/llava-1.5-7b-hf"}'),
('BLIP2_OPT_2_7B','BLIP Image Captioning','custom',true,'{"provider":"huggingface","model_id":"Salesforce/blip-image-captioning-base"}'),
('VIT_GPT2','Vit gpt2 image captioning','custom',true,'{"provider":"huggingface","model_id":"nlpconnect/vit-gpt2-image-captioning"}')
""")
op.execute("""
INSERT INTO json_schemas (schema_id,title,schema,version) VALUES
('default_caption@1.0.0','Default Caption Schema',
'{"type":"object","properties":{"analysis":{"type":"string"},"metadata":{"type":"object","properties":{"title":{"type":"string"},"source":{"type":"string"},"type":{"type":"string"},"countries":{"type":"array","items":{"type":"string"}},"epsg":{"type":"string"}}}},"required":["analysis","metadata"]}',
'1.0.0')
""")
for c in pycountry.countries:
code = c.alpha_2
name = c.name.replace("'", "''")
region = _guess_region(code)
op.execute(
f"INSERT INTO countries (c_code,label,r_code) VALUES ('{code}','{name}','{region}')"
)
op.execute("INSERT INTO countries (c_code,label,r_code) VALUES ('XX','Not Applicable','OTHER')")
op.create_table(
'images',
sa.Column('image_id', postgresql.UUID(as_uuid=True),
server_default=sa.text('gen_random_uuid()'),
primary_key=True),
sa.Column('file_key', sa.String(), nullable=False),
sa.Column('sha256', sa.String(), nullable=False),
sa.Column('source', sa.String(), sa.ForeignKey('sources.s_code'), nullable=False),
sa.Column('event_type', sa.String(), sa.ForeignKey('event_types.t_code'), nullable=False),
sa.Column('epsg', sa.String(), sa.ForeignKey('spatial_references.epsg'), nullable=False),
sa.Column('image_type', sa.String(), sa.ForeignKey('image_types.image_type'), nullable=False),
sa.Column('created_at', sa.TIMESTAMP(timezone=True), server_default=sa.text('NOW()'), nullable=False),
sa.Column('captured_at', sa.TIMESTAMP(timezone=True), nullable=True),
sa.Column('title', sa.String(), nullable=True),
sa.Column('prompt', sa.String(), sa.ForeignKey('prompts.p_code'), nullable=True),
sa.Column('model', sa.String(), sa.ForeignKey('models.m_code'), nullable=True),
sa.Column('schema_id', sa.String(), sa.ForeignKey('json_schemas.schema_id'), nullable=True),
sa.Column('raw_json', postgresql.JSONB(astext_type=sa.Text()), nullable=True),
sa.Column('generated', sa.Text(), nullable=True),
sa.Column('edited', sa.Text(), nullable=True),
sa.Column('accuracy', sa.SmallInteger()),
sa.Column('context', sa.SmallInteger()),
sa.Column('usability', sa.SmallInteger()),
sa.Column('starred', sa.Boolean(), server_default=sa.text('false')),
sa.Column('updated_at', sa.TIMESTAMP(timezone=True), nullable=True),
sa.CheckConstraint('accuracy IS NULL OR (accuracy BETWEEN 0 AND 100)', name='chk_images_accuracy'),
sa.CheckConstraint('context IS NULL OR (context BETWEEN 0 AND 100)', name='chk_images_context'),
sa.CheckConstraint('usability IS NULL OR (usability BETWEEN 0 AND 100)', name='chk_images_usability')
)
op.create_table(
'image_countries',
sa.Column('image_id', postgresql.UUID(as_uuid=True), nullable=False),
sa.Column('c_code', sa.CHAR(length=2), nullable=False),
sa.PrimaryKeyConstraint('image_id', 'c_code', name='pk_image_countries'),
sa.ForeignKeyConstraint(['image_id'], ['images.image_id'], ondelete='CASCADE'),
sa.ForeignKeyConstraint(['c_code'], ['countries.c_code'])
)
op.create_index('ix_images_created_at', 'images', ['created_at'])
def downgrade():
op.drop_index('ix_images_created_at', table_name='images')
op.drop_table('image_countries')
op.drop_table('images')
op.drop_table('json_schemas')
op.drop_table('models')
op.drop_table('image_types')
op.drop_table('spatial_references')
op.drop_table('countries')
op.drop_table('event_types')
op.drop_table('regions')
op.drop_table('sources')
|