File size: 13,989 Bytes
1686de5
d25db6b
 
1686de5
d25db6b
 
 
 
 
 
 
ba5edb0
d25db6b
 
 
 
1686de5
d25db6b
 
 
 
 
 
 
1686de5
d25db6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686de5
 
 
 
 
 
 
 
 
 
 
 
d25db6b
 
 
 
 
 
 
 
 
 
 
 
1686de5
d25db6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5d98f
 
 
 
 
 
d25db6b
 
 
 
d7291ef
 
1686de5
 
 
 
 
 
 
 
 
d25db6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7291ef
 
d25db6b
 
1686de5
d25db6b
 
 
d7291ef
d25db6b
d7291ef
d25db6b
d7291ef
 
 
 
d25db6b
 
 
d7291ef
 
 
 
d25db6b
d7291ef
d25db6b
d7291ef
 
d25db6b
 
 
 
 
 
 
 
 
 
 
 
 
1686de5
d25db6b
 
 
1686de5
d25db6b
d7291ef
 
1686de5
d7291ef
1686de5
d25db6b
 
 
 
 
 
fe5d98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d25db6b
d7291ef
1686de5
d7291ef
 
 
1686de5
 
 
 
 
 
 
 
 
d25db6b
 
 
 
 
 
 
1686de5
d25db6b
1686de5
d25db6b
 
 
 
 
 
 
 
 
1686de5
d25db6b
 
1686de5
 
65933cd
 
fe5d98f
65933cd
 
 
 
 
 
 
 
 
 
 
 
 
 
d25db6b
65933cd
d25db6b
 
 
 
1686de5
d25db6b
1686de5
d25db6b
 
1686de5
 
d25db6b
 
1686de5
d25db6b
 
1686de5
d25db6b
 
 
 
1686de5
d25db6b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""initial schema + full dynamic country seed (with json schemas & validation)

Revision ID: 0001_initial_schema_and_seed
Revises:
Create Date: 2025-08-01 20:00:00.000000
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
import pycountry

revision = 'b8fc40bfe3c7'
down_revision = None
branch_labels = None
depends_on = None


def _guess_region(alpha2: str) -> str:
    AFR = {'DZ','AO','BJ','BW','BF','BI','CM','CV','CF','TD','KM','CG','CD','CI','DJ','EG',
           'GQ','ER','SZ','ET','GA','GM','GH','GN','GW','KE','LS','LR','LY','MG','MW','ML',
           'MR','MU','YT','MA','MZ','NA','NE','NG','RE','RW','SH','ST','SN','SC','SL','SO',
           'ZA','SS','SD','TZ','TG','TN','UG','EH','ZM','ZW'}
    AMR = {'US','CA','MX','BR','AR','CO','PE','VE','CL','EC','GT','CU','BO','DO','HT','HN',
           'PY','NI','SV','CR','PA','UY','JM','TT','GY','SR','BZ','KY','AG','BS','BB','BM',
           'DM','GD','GP','MQ','MS','PR','KN','LC','VC','SX','TC','VI'}
    EUR = {'AL','AD','AT','BY','BE','BA','BG','HR','CY','CZ','DK','EE','FI','FR','DE','GI',
           'GR','HU','IS','IE','IT','XK','LV','LI','LT','LU','MT','MD','MC','ME','NL','MK',
           'NO','PL','PT','RO','RU','SM','RS','SK','SI','ES','SE','CH','TR','UA','GB','VA'}
    MENA = {'DZ','BH','EG','IR','IQ','IL','JO','KW','LB','LY','MA','OM','QA','SA','SY','TN',
            'AE','YE','PS','SD','EH'}
    if alpha2 in MENA:
        return 'MENA'
    if alpha2 in (AFR - MENA):
        return 'AFR'
    if alpha2 in AMR:
        return 'AMR'
    if alpha2 in EUR:
        return 'EUR'
    return 'APA'


def upgrade():
    op.execute('CREATE EXTENSION IF NOT EXISTS pgcrypto;')
    
    op.execute("DROP TABLE IF EXISTS captions CASCADE;")
    op.execute("DROP TABLE IF EXISTS image_countries CASCADE;")
    op.execute("DROP TABLE IF EXISTS images CASCADE;")
    op.execute("DROP TABLE IF EXISTS json_schemas CASCADE;")
    op.execute("DROP TABLE IF EXISTS models CASCADE;")
    op.execute("DROP TABLE IF EXISTS image_types CASCADE;")
    op.execute("DROP TABLE IF EXISTS spatial_references CASCADE;")
    op.execute("DROP TABLE IF EXISTS countries CASCADE;")
    op.execute("DROP TABLE IF EXISTS event_types CASCADE;")
    op.execute("DROP TABLE IF EXISTS regions CASCADE;")
    op.execute("DROP TABLE IF EXISTS sources CASCADE;")

    op.create_table(
        'sources',
        sa.Column('s_code', sa.String(), primary_key=True),
        sa.Column('label', sa.String(), nullable=False),
    )
    op.create_table(
        'regions',
        sa.Column('r_code', sa.String(), primary_key=True),
        sa.Column('label', sa.String(), nullable=False),
    )
    op.create_table(
        'event_types',
        sa.Column('t_code', sa.String(), primary_key=True),
        sa.Column('label', sa.String(), nullable=False),
    )
    op.create_table(
        'countries',
        sa.Column('c_code', sa.CHAR(length=2), primary_key=True),
        sa.Column('label', sa.String(), nullable=False),
        sa.Column('r_code', sa.String(), sa.ForeignKey('regions.r_code'), nullable=False),
    )
    op.create_table(
        'spatial_references',
        sa.Column('epsg', sa.String(), primary_key=True),
        sa.Column('srid', sa.String(), nullable=False),
        sa.Column('proj4', sa.String(), nullable=False),
        sa.Column('wkt', sa.String(), nullable=False),
    )
    op.create_table(
        'image_types',
        sa.Column('image_type', sa.String(), primary_key=True),
        sa.Column('label', sa.String(), nullable=False),
    )
    op.create_table(
        'prompts',
        sa.Column('p_code', sa.String(), primary_key=True),
        sa.Column('label', sa.Text(), nullable=False),
        sa.Column('metadata_instructions', sa.Text(), nullable=True),
    )
    op.create_table(
        'models',
        sa.Column('m_code', sa.String(), primary_key=True),
        sa.Column('label', sa.String(), nullable=False),
        sa.Column('model_type', sa.String(), nullable=False),
        sa.Column('is_available', sa.Boolean(), server_default=sa.text('true')),
        sa.Column('config', postgresql.JSONB(astext_type=sa.Text()), nullable=True),
    )
    op.create_table(
        'json_schemas',
        sa.Column('schema_id', sa.String(), primary_key=True),
        sa.Column('title', sa.String(), nullable=False),
        sa.Column('schema', postgresql.JSONB(astext_type=sa.Text()), nullable=False),
        sa.Column('version', sa.String(), nullable=False),
        sa.Column('created_at', sa.TIMESTAMP(timezone=True), server_default=sa.text('NOW()'), nullable=False),
    )

    op.execute("""
      INSERT INTO sources (s_code,label) VALUES
        ('PDC','PDC'),
        ('GDACS','GDACS'),
        ('WFP','WFP ADAM'),
        ('GFH','Google Flood Hub'),
        ('GGC','Google GenCast'),
        ('USGS','USGS'),
        ('OTHER','Other')
    """)
    op.execute("""
      INSERT INTO regions (r_code,label) VALUES
        ('AFR','Africa'),
        ('AMR','Americas'),
        ('APA','Asia-Pacific'),
        ('EUR','Europe'),
        ('MENA','Middle East & N Africa'),
        ('OTHER','Other')
    """)
    op.execute("""
      INSERT INTO event_types (t_code,label) VALUES
        ('BIOLOGICAL_EMERGENCY','Biological Emergency'),
        ('CHEMICAL_EMERGENCY','Chemical Emergency'),
        ('CIVIL_UNREST','Civil Unrest'),
        ('COLD_WAVE','Cold Wave'),
        ('COMPLEX_EMERGENCY','Complex Emergency'),
        ('CYCLONE','Cyclone'),
        ('DROUGHT','Drought'),
        ('EARTHQUAKE','Earthquake'),
        ('EPIDEMIC','Epidemic'),
        ('FIRE','Fire'),
        ('FLOOD','Flood'),
        ('FLOOD_INSECURITY','Flood Insecurity'),
        ('HEAT_WAVE','Heat Wave'),
        ('INSECT_INFESTATION','Insect Infestation'),
        ('LANDSLIDE','Landslide'),
        ('OTHER','Other'),
        ('PLUVIAL','Pluvial'),
        ('POPULATION_MOVEMENT','Population Movement'),
        ('RADIOLOGICAL_EMERGENCY','Radiological Emergency'),
        ('STORM','Storm'),
        ('TRANSPORTATION_EMERGENCY','Transportation Emergency'),
        ('TSUNAMI','Tsunami'),
        ('VOLCANIC_ERUPTION','Volcanic Eruption')
    """)
    op.execute("""
      INSERT INTO spatial_references (epsg, srid, proj4, wkt) VALUES
        ('4326','4326',
          '+proj=longlat +datum=WGS84 +no_defs',
          'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]'
        ),
        ('3857','3857',
          '+proj=merc +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs',
          'PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]]'
        ),
        ('32633','32633',
          '+proj=utm +zone=33 +datum=WGS84 +units=m +no_defs',
          'PROJCS["WGS 84 / UTM zone 33N",GEOGCS["WGS 84",DATUM["WGS 84",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]'
        ),
        ('32634','32634',
          '+proj=utm +zone=34 +datum=WGS84 +units=m +no_defs',
          'PROJCS["WGS 84 / UTM zone 34N",GEOGCS["WGS 84",DATUM["WGS 84",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]'
        ),
        ('32617','32617',
          '+proj=utm +zone=17 +datum=WGS84 +units=m +no_defs',
          'PROJCS["WGS 84 / UTM zone 17N",GEOGCS["WGS 84",DATUM["WGS 84",SPHEROID["WGS 84",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-81],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1]]'
        ),
        ('OTHER','OTHER','','OTHER')
    """)
    op.execute("""
      INSERT INTO image_types (image_type,label) VALUES
        ('crisis_map','Crisis Map'),
        ('drone_image','Drone Image')
    """)
    op.execute("""
      INSERT INTO prompts (p_code,label,metadata_instructions) VALUES
        ('DEFAULT_CRISIS_MAP','Analyze this crisis map and provide a detailed description of the emergency situation, affected areas, and key information shown in the map.','Additionally, extract the following metadata in JSON format. Choose exactly ONE option from each category:

- title: Create a concise title (less than 10 words) for the crisis/event
- source: Choose ONE from: PDC, GDACS, WFP, GFH, GGC, USGS, OTHER
- type: Choose ONE from: BIOLOGICAL_EMERGENCY, CHEMICAL_EMERGENCY, CIVIL_UNREST, COLD_WAVE, COMPLEX_EMERGENCY, CYCLONE, DROUGHT, EARTHQUAKE, EPIDEMIC, FIRE, FLOOD, FLOOD_INSECURITY, HEAT_WAVE, INSECT_INFESTATION, LANDSLIDE, OTHER, PLUVIAL, POPULATION_MOVEMENT, RADIOLOGICAL_EMERGENCY, STORM, TRANSPORTATION_EMERGENCY, TSUNAMI, VOLCANIC_ERUPTION
- countries: List of affected country codes (ISO 2-letter codes like PA, US, etc.)
- epsg: Choose ONE from: 4326, 3857, 32617, 32633, 32634, OTHER. If the map shows a different EPSG code, use "OTHER"

If you cannot find a match, use "OTHER". Return ONLY the JSON object (no markdown formatting) in this exact format:
{
  "analysis": "detailed description...",
  "metadata": {
    "title": "...",
    "source": "...",
    "type": "...",
    "countries": ["..."],
    "epsg": "..."
  }
}')
    """)
    op.execute("""
      INSERT INTO models (m_code,label,model_type,is_available,config) VALUES
        ('GPT-4O','GPT-4O','gpt4o',true,'{"provider":"openai","model":"gpt-4o"}'),
        ('GEMINI15','Gemini 1.5','gemini_pro_vision',true,'{}'),
        ('CLAUDE3','Claude 3','claude_3_5_sonnet',false,'{}'),
        ('STUB_MODEL','Stub Model','custom',true,'{"stub": true}'),
        ('LLAVA_1_5_7B','LLaVA 1.5 7B','custom',true,'{"provider":"huggingface","model_id":"llava-hf/llava-1.5-7b-hf"}'),
        ('BLIP2_OPT_2_7B','BLIP Image Captioning','custom',true,'{"provider":"huggingface","model_id":"Salesforce/blip-image-captioning-base"}'),
        ('VIT_GPT2','Vit gpt2 image captioning','custom',true,'{"provider":"huggingface","model_id":"nlpconnect/vit-gpt2-image-captioning"}')
    """)
    op.execute("""
      INSERT INTO json_schemas (schema_id,title,schema,version) VALUES
        ('default_caption@1.0.0','Default Caption Schema',
         '{"type":"object","properties":{"analysis":{"type":"string"},"metadata":{"type":"object","properties":{"title":{"type":"string"},"source":{"type":"string"},"type":{"type":"string"},"countries":{"type":"array","items":{"type":"string"}},"epsg":{"type":"string"}}}},"required":["analysis","metadata"]}',
         '1.0.0')
    """)

    for c in pycountry.countries:
        code = c.alpha_2
        name = c.name.replace("'", "''")
        region = _guess_region(code)
        op.execute(
            f"INSERT INTO countries (c_code,label,r_code) VALUES ('{code}','{name}','{region}')"
        )
    op.execute("INSERT INTO countries (c_code,label,r_code) VALUES ('XX','Not Applicable','OTHER')")

    op.create_table(
        'images',
        sa.Column('image_id', postgresql.UUID(as_uuid=True),
                  server_default=sa.text('gen_random_uuid()'),
                  primary_key=True),
        sa.Column('file_key', sa.String(), nullable=False),
        sa.Column('sha256', sa.String(), nullable=False),
        sa.Column('source', sa.String(), sa.ForeignKey('sources.s_code'), nullable=False),
        sa.Column('event_type', sa.String(), sa.ForeignKey('event_types.t_code'), nullable=False),
        sa.Column('epsg', sa.String(), sa.ForeignKey('spatial_references.epsg'), nullable=False),
        sa.Column('image_type', sa.String(), sa.ForeignKey('image_types.image_type'), nullable=False),
        sa.Column('created_at', sa.TIMESTAMP(timezone=True), server_default=sa.text('NOW()'), nullable=False),
        sa.Column('captured_at', sa.TIMESTAMP(timezone=True), nullable=True),

        sa.Column('title', sa.String(), nullable=True),
        sa.Column('prompt', sa.String(), sa.ForeignKey('prompts.p_code'), nullable=True),
        sa.Column('model', sa.String(), sa.ForeignKey('models.m_code'), nullable=True),
        sa.Column('schema_id', sa.String(), sa.ForeignKey('json_schemas.schema_id'), nullable=True),
        sa.Column('raw_json', postgresql.JSONB(astext_type=sa.Text()), nullable=True),
        sa.Column('generated', sa.Text(), nullable=True),
        sa.Column('edited', sa.Text(), nullable=True),
        sa.Column('accuracy', sa.SmallInteger()),
        sa.Column('context', sa.SmallInteger()),
        sa.Column('usability', sa.SmallInteger()),
        sa.Column('starred', sa.Boolean(), server_default=sa.text('false')),
        sa.Column('updated_at', sa.TIMESTAMP(timezone=True), nullable=True),

        sa.CheckConstraint('accuracy  IS NULL OR (accuracy  BETWEEN 0 AND 100)', name='chk_images_accuracy'),
        sa.CheckConstraint('context   IS NULL OR (context   BETWEEN 0 AND 100)', name='chk_images_context'),
        sa.CheckConstraint('usability IS NULL OR (usability BETWEEN 0 AND 100)', name='chk_images_usability')
    )

    op.create_table(
        'image_countries',
        sa.Column('image_id', postgresql.UUID(as_uuid=True), nullable=False),
        sa.Column('c_code', sa.CHAR(length=2), nullable=False),
        sa.PrimaryKeyConstraint('image_id', 'c_code', name='pk_image_countries'),
        sa.ForeignKeyConstraint(['image_id'], ['images.image_id'], ondelete='CASCADE'),
        sa.ForeignKeyConstraint(['c_code'], ['countries.c_code'])
    )

    op.create_index('ix_images_created_at', 'images', ['created_at'])


def downgrade():
    op.drop_index('ix_images_created_at', table_name='images')
    op.drop_table('image_countries')
    op.drop_table('images')
    op.drop_table('json_schemas')
    op.drop_table('models')
    op.drop_table('image_types')
    op.drop_table('spatial_references')
    op.drop_table('countries')
    op.drop_table('event_types')
    op.drop_table('regions')
    op.drop_table('sources')