Spaces:
Running
Running
File size: 12,429 Bytes
186c8e8 3cf9fa0 d7291ef 1686de5 351d460 186c8e8 3cf9fa0 186c8e8 d7291ef 186c8e8 3cf9fa0 186c8e8 3cf9fa0 d7291ef 351d460 3cf9fa0 186c8e8 351d460 186c8e8 351d460 186c8e8 3cf9fa0 186c8e8 3cf9fa0 186c8e8 3cf9fa0 1686de5 186c8e8 d7291ef 186c8e8 d7291ef 186c8e8 1686de5 186c8e8 d7291ef 3cf9fa0 d7291ef 186c8e8 d7291ef 1686de5 d7291ef 186c8e8 d7291ef 3cf9fa0 d7291ef 3cf9fa0 186c8e8 3cf9fa0 186c8e8 3cf9fa0 186c8e8 d7291ef 186c8e8 3cf9fa0 186c8e8 3cf9fa0 186c8e8 872dec2 3cf9fa0 872dec2 3cf9fa0 186c8e8 3cf9fa0 872dec2 3cf9fa0 872dec2 351d460 3cf9fa0 186c8e8 351d460 186c8e8 351d460 3cf9fa0 186c8e8 872dec2 3cf9fa0 186c8e8 351d460 186c8e8 3cf9fa0 186c8e8 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 3cf9fa0 351d460 186c8e8 3cf9fa0 186c8e8 3cf9fa0 186c8e8 3cf9fa0 186c8e8 8f65a47 3cf9fa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# services/huggingface_service.py
from __future__ import annotations
from .vlm_service import VLMService, ModelType, ServiceStatus
from typing import Dict, Any, List, Optional
import aiohttp
import base64
import time
import re
import json
import imghdr
import os
def _env_token() -> Optional[str]:
return (
os.getenv("HF_API_KEY")
or os.getenv("HF_TOKEN")
or os.getenv("HUGGINGFACEHUB_API_TOKEN")
)
def _providers_url_default() -> str:
# OpenAI-compatible gateway on HF Inference Providers
return os.getenv("HF_PROVIDERS_URL", "https://api-inference.huggingface.co/providers/openai")
class HuggingFaceService(VLMService):
"""
HuggingFace Inference Providers service implementation (OpenAI-compatible).
- No network in __init__
- Short, safe probe()
- Lazy use during generate_*
"""
def __init__(self, api_key: str, model_id: str, providers_url: str, public_name: str | None = None):
super().__init__(
public_name or (model_id or "HUGGINGFACE"),
ModelType.CUSTOM,
provider="huggingface",
lazy_init=True,
)
self.api_key = api_key
self.model_id = model_id
self.providers_url = providers_url
# also keep model_name aligned
self.model_name = public_name or (model_id or "HUGGINGFACE")
if not self.api_key or not self.model_id:
self.is_available = False
self.status = ServiceStatus.DEGRADED
# ---------- helpers ----------
def _guess_mime(self, image_bytes: bytes) -> str:
kind = imghdr.what(None, h=image_bytes)
if kind == "jpeg":
return "image/jpeg"
if kind == "png":
return "image/png"
if kind == "gif":
return "image/gif"
if kind == "webp":
return "image/webp"
return "image/jpeg"
# ---------- lifecycle ----------
async def probe(self) -> bool:
"""
Lightweight reachability check.
- Validates token with whoami
- Checks model endpoint exists/reachable
Never raises, returns bool.
"""
if not self.api_key or not self.model_id:
return False
try:
timeout = aiohttp.ClientTimeout(total=5)
headers_auth = {"Authorization": f"Bearer {self.api_key}"}
async with aiohttp.ClientSession(timeout=timeout) as session:
# Token check
r1 = await session.get("https://huggingface.co/api/whoami-v2", headers=headers_auth)
if r1.status != 200:
return False
# Model reachability (Inference API — GET is fine)
r2 = await session.get(f"https://api-inference.huggingface.co/models/{self.model_id}", headers=headers_auth)
# Consider 200, 503 (loading), 403/404 (exists but gated/private) as "reachable"
if r2.status in (200, 503, 403, 404):
return True
return False
except Exception:
return False
async def ensure_ready(self) -> bool:
# Nothing to warm here; we keep it trivial.
self._initialized = True
return True
# ---------- caption APIs ----------
async def generate_caption(
self,
image_bytes: bytes,
prompt: str,
metadata_instructions: str = "",
) -> Dict[str, Any]:
"""
Generate caption using HF Inference Providers (OpenAI-style chat).
"""
if not self.api_key or not self.model_id:
raise Exception("MODEL_UNAVAILABLE: HuggingFace credentials or model_id missing.")
start_time = time.time()
instruction = (prompt or "").strip()
if metadata_instructions:
instruction += "\n\n" + metadata_instructions.strip()
mime = self._guess_mime(image_bytes)
data_url = f"data:{mime};base64,{base64.b64encode(image_bytes).decode('utf-8')}"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
payload = {
"model": self.model_id,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": instruction},
{"type": "image_url", "image_url": {"url": data_url}},
],
}
],
"max_tokens": 512,
"temperature": 0.2,
}
try:
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=60)) as session:
async with session.post(
self.providers_url,
headers=headers,
json=payload,
) as resp:
raw_text = await resp.text()
if resp.status != 200:
# Surface a consistent, catchable error for fallback
raise Exception(f"MODEL_UNAVAILABLE: {self.model_name} unavailable (HTTP {resp.status}).")
result = await resp.json()
except Exception as e:
# Never leak aiohttp exceptions outward as-is; normalize to your fallback signal
if "MODEL_UNAVAILABLE" not in str(e):
raise Exception(f"MODEL_UNAVAILABLE: {self.model_name} is unavailable due to a network/error.")
raise
# ----- Parse response -----
message = (result.get("choices") or [{}])[0].get("message", {})
content = message.get("content", "")
# GLM models sometimes put content in reasoning_content
if not content and message.get("reasoning_content"):
content = message.get("reasoning_content", "")
if isinstance(content, list):
parts = []
for block in content:
if isinstance(block, dict):
parts.append(block.get("text") or block.get("content") or "")
else:
parts.append(str(block))
content = "\n".join([p for p in parts if p])
caption = (content or "").strip()
# Strip accidental fenced JSON
if caption.startswith("```json"):
caption = re.sub(r"^```json\s*", "", caption)
caption = re.sub(r"\s*```$", "", caption)
metadata = {}
description = ""
analysis = caption
recommended_actions = ""
try:
parsed = json.loads(caption)
description = parsed.get("description", "")
analysis = parsed.get("analysis", caption)
recommended_actions = parsed.get("recommended_actions", "")
metadata = parsed.get("metadata", {})
caption_text = f"Description: {description}\n\nAnalysis: {analysis}\n\nRecommended Actions: {recommended_actions}"
except json.JSONDecodeError:
parsed = None
caption_text = caption
elapsed = time.time() - start_time
return {
"caption": caption_text,
"metadata": metadata,
"confidence": None,
"processing_time": elapsed,
"raw_response": {
"model": self.model_id,
"content": content,
"parsed": parsed,
},
"description": description,
"analysis": analysis,
"recommended_actions": recommended_actions,
}
async def generate_multi_image_caption(
self,
image_bytes_list: List[bytes],
prompt: str,
metadata_instructions: str = "",
) -> Dict[str, Any]:
"""
Generate caption for multiple images using HF Inference Providers (OpenAI-style chat).
"""
if not self.api_key or not self.model_id:
raise Exception("MODEL_UNAVAILABLE: HuggingFace credentials or model_id missing.")
start_time = time.time()
instruction = (prompt or "").strip()
if metadata_instructions:
instruction += "\n\n" + metadata_instructions.strip()
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
content = [{"type": "text", "text": instruction}]
for image_bytes in image_bytes_list:
mime = self._guess_mime(image_bytes)
data_url = f"data:{mime};base64,{base64.b64encode(image_bytes).decode('utf-8')}"
content.append({"type": "image_url", "image_url": {"url": data_url}})
payload = {
"model": self.model_id,
"messages": [{"role": "user", "content": content}],
"max_tokens": 800,
"temperature": 0.2,
}
try:
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=60)) as session:
async with session.post(
self.providers_url,
headers=headers,
json=payload,
) as resp:
raw_text = await resp.text()
if resp.status != 200:
raise Exception(f"MODEL_UNAVAILABLE: {self.model_name} unavailable (HTTP {resp.status}).")
result = await resp.json()
except Exception as e:
if "MODEL_UNAVAILABLE" not in str(e):
raise Exception(f"MODEL_UNAVAILABLE: {self.model_name} is unavailable due to a network/error.")
raise
message = (result.get("choices") or [{}])[0].get("message", {})
content_out = message.get("content", "")
if not content_out and message.get("reasoning_content"):
content_out = message.get("reasoning_content", "")
if isinstance(content_out, list):
parts = []
for block in content_out:
if isinstance(block, dict):
parts.append(block.get("text") or block.get("content") or "")
else:
parts.append(str(block))
content_out = "\n".join([p for p in parts if p])
caption = (content_out or "").strip()
if caption.startswith("```json"):
caption = re.sub(r"^```json\s*", "", caption)
caption = re.sub(r"\s*```$", "", caption)
metadata = {}
description = ""
analysis = caption
recommended_actions = ""
try:
parsed = json.loads(caption)
description = parsed.get("description", "")
analysis = parsed.get("analysis", caption)
recommended_actions = parsed.get("recommended_actions", "")
metadata = parsed.get("metadata", {})
caption_text = f"Description: {description}\n\nAnalysis: {analysis}\n\nRecommended Actions: {recommended_actions}"
except json.JSONDecodeError:
parsed = None
caption_text = caption
elapsed = time.time() - start_time
return {
"caption": caption_text,
"metadata": metadata,
"confidence": None,
"processing_time": elapsed,
"raw_response": {
"model": self.model_id,
"content": content_out,
"parsed": parsed,
"image_count": len(image_bytes_list),
},
"description": description,
"analysis": analysis,
"recommended_actions": recommended_actions,
}
# --- Generic wrapper for easy dynamic registration ---
class ProvidersGenericVLMService(HuggingFaceService):
"""
Generic wrapper so you can register ANY Providers VLM by model_id from config/DB.
Example:
ProvidersGenericVLMService(None, "Qwen/Qwen2.5-VL-32B-Instruct", "QWEN2_5_VL_32B")
"""
def __init__(self, api_key: str, model_id: str, public_name: str | None = None):
providers_url = "https://api-inference.huggingface.co/providers/openai"
super().__init__(
api_key=api_key,
model_id=model_id,
providers_url=providers_url,
public_name=public_name or model_id.replace("/", "_").upper(),
)
if not self.api_key or not self.model_id:
self.is_available = False
self.status = ServiceStatus.DEGRADED
|