File size: 10,272 Bytes
ba5edb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872dec2
ba5edb0
872dec2
ba5edb0
 
 
 
 
 
 
 
 
 
 
 
872dec2
ba5edb0
 
 
 
 
 
 
 
 
 
 
 
872dec2
ba5edb0
872dec2
ba5edb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872dec2
ba5edb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
833c993
 
 
 
 
 
 
 
 
872dec2
833c993
 
872dec2
833c993
872dec2
 
 
 
 
 
 
 
833c993
 
 
ba5edb0
 
 
 
 
 
872dec2
ba5edb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872dec2
ba5edb0
872dec2
ba5edb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import json
from typing import Dict, Any, Optional, Tuple
from jsonschema import validate, ValidationError
from jsonschema.validators import Draft7Validator
import logging

logger = logging.getLogger(__name__)

class SchemaValidator:
    """Service for validating JSON data against stored schemas"""
    
    def __init__(self):
        self.validators = {}
    
    def validate_against_schema(self, data: Dict[str, Any], schema: Dict[str, Any], schema_id: str) -> Tuple[bool, Optional[str]]:
        """
        Validate JSON data against a schema
        
        Args:
            data: The JSON data to validate
            schema: The JSON schema to validate against
            schema_id: Identifier for the schema (for logging)
            
        Returns:
            Tuple of (is_valid, error_message)
        """
        try:
            # Use Draft7Validator for better error messages
            validator = Draft7Validator(schema)
            errors = list(validator.iter_errors(data))
            
            if errors:
                error_messages = []
                for error in errors:
                    path = " -> ".join(str(p) for p in error.path) if error.path else "root"
                    error_messages.append(f"{path}: {error.message}")
                
                error_msg = f"Schema validation failed for {schema_id}: {'; '.join(error_messages)}"
                logger.warning(error_msg)
                return False, error_msg
            
            logger.info(f"Schema validation passed for {schema_id}")
            return True, None
            
        except Exception as e:
            error_msg = f"Schema validation error for {schema_id}: {str(e)}"
            logger.error(error_msg)
            return False, error_msg
    
    def validate_crisis_map_data(self, data: Dict[str, Any]) -> Tuple[bool, Optional[str]]:
        """
        Validate crisis map data against the default schema
        """
        # Define the expected crisis map schema
        crisis_schema = {
            "type": "object",
            "properties": {
                "description": {"type": "string"},
                "analysis": {"type": "string"},
                "recommended_actions": {"type": "string"},
                "metadata": {
                    "type": "object",
                    "properties": {
                        "title": {"type": "string"},
                        "source": {"type": "string"},
                        "type": {"type": "string"},
                        "countries": {"type": "array", "items": {"type": "string"}},
                        "epsg": {"type": "string"}
                    },
                    "required": ["title", "source", "type", "countries", "epsg"]
                }
            },
            "required": ["description", "analysis", "recommended_actions", "metadata"]
        }
        
        return self.validate_against_schema(data, crisis_schema, "crisis_map")
    
    def validate_drone_data(self, data: Dict[str, Any]) -> Tuple[bool, Optional[str]]:
        """
        Validate drone data against the drone schema
        """
        # Define the expected drone schema
        drone_schema = {
            "type": "object",
            "properties": {
                "description": {"type": "string"},
                "analysis": {"type": "string"},
                "recommended_actions": {"type": "string"},
                "metadata": {
                    "type": "object",
                    "properties": {
                        "title": {"type": ["string", "null"]},
                        "source": {"type": ["string", "null"]},
                        "type": {"type": ["string", "null"]},
                        "countries": {"type": ["array", "null"], "items": {"type": "string"}},
                        "epsg": {"type": ["string", "null"]},
                        "center_lat": {"type": ["number", "null"], "minimum": -90, "maximum": 90},
                        "center_lon": {"type": ["number", "null"], "minimum": -180, "maximum": 180},
                        "amsl_m": {"type": ["number", "null"]},
                        "agl_m": {"type": ["number", "null"]},
                        "heading_deg": {"type": ["number", "null"], "minimum": 0, "maximum": 360},
                        "yaw_deg": {"type": ["number", "null"], "minimum": -180, "maximum": 180},
                        "pitch_deg": {"type": ["number", "null"], "minimum": -90, "maximum": 90},
                        "roll_deg": {"type": ["number", "null"], "minimum": -180, "maximum": 180},
                        "rtk_fix": {"type": ["boolean", "null"]},
                        "std_h_m": {"type": ["number", "null"], "minimum": 0},
                        "std_v_m": {"type": ["number", "null"], "minimum": 0}
                    }
                }
            },
            "required": ["description", "analysis", "recommended_actions", "metadata"]
        }
        
        return self.validate_against_schema(data, drone_schema, "drone")
    
    def validate_data_by_type(self, data: Dict[str, Any], image_type: str) -> Tuple[bool, Optional[str]]:
        """
        Validate data based on image type
        
        Args:
            data: The JSON data to validate
            image_type: Either 'crisis_map' or 'drone_image'
            
        Returns:
            Tuple of (is_valid, error_message)
        """
        if image_type == 'drone_image':
            return self.validate_drone_data(data)
        elif image_type == 'crisis_map':
            return self.validate_crisis_map_data(data)
        else:
            return False, f"Unknown image type: {image_type}"
    
    def clean_and_validate_data(self, raw_data: Dict[str, Any], image_type: str) -> Tuple[Dict[str, Any], bool, Optional[str]]:
        """
        Clean and validate data, returning cleaned data, validation status, and any errors
        
        Args:
            raw_data: Raw data from VLM
            image_type: Type of image being processed
            
        Returns:
            Tuple of (cleaned_data, is_valid, error_message)
        """
        try:
            if "raw_response" in raw_data:
                ai_data = raw_data["raw_response"]
                
                if "response" in ai_data:
                    content = ai_data["response"]
                    if isinstance(content, str):
                        try:
                            data = json.loads(content)
                        except json.JSONDecodeError:
                            data = {"description": "", "analysis": content, "recommended_actions": "", "metadata": {}}
                    else:
                        data = content
                elif "description" in ai_data and "analysis" in ai_data and "recommended_actions" in ai_data and "metadata" in ai_data:
                    data = ai_data
                elif "analysis" in ai_data and "metadata" in ai_data:
                    # Backward compatibility for old format
                    data = {
                        "description": "",
                        "analysis": ai_data["analysis"],
                        "recommended_actions": "",
                        "metadata": ai_data["metadata"]
                    }
                else:
                    data = ai_data
            elif "content" in raw_data:
                content = raw_data["content"]
                if isinstance(content, str):
                    try:
                        parsed_content = json.loads(content)
                        data = parsed_content
                    except json.JSONDecodeError:
                        data = {"description": "", "analysis": content, "recommended_actions": "", "metadata": {}}
                else:
                    data = content
            else:
                data = raw_data
            
            is_valid, error_msg = self.validate_data_by_type(data, image_type)
            
            if is_valid:
                cleaned_data = self._clean_data(data, image_type)
                return cleaned_data, True, None
            else:
                return data, False, error_msg
                
        except Exception as e:
            error_msg = f"Data processing error: {str(e)}"
            logger.error(error_msg)
            return raw_data, False, error_msg
    
    def _clean_data(self, data: Dict[str, Any], image_type: str) -> Dict[str, Any]:
        """
        Clean and normalize the data structure
        """
        cleaned = {
            "description": data.get("description", ""),
            "analysis": data.get("analysis", ""),
            "recommended_actions": data.get("recommended_actions", ""),
            "metadata": {}
        }
        
        metadata = data.get("metadata", {})
        
        # Clean metadata based on image type
        if image_type == 'crisis_map':
            cleaned["metadata"] = {
                "title": metadata.get("title", ""),
                "source": metadata.get("source", "OTHER"),
                "type": metadata.get("type", "OTHER"),
                "countries": metadata.get("countries", []),
                "epsg": metadata.get("epsg", "OTHER")
            }
        elif image_type == 'drone_image':
            cleaned["metadata"] = {
                "title": metadata.get("title"),
                "source": metadata.get("source"),
                "type": metadata.get("type"),
                "countries": metadata.get("countries"),
                "epsg": metadata.get("epsg"),
                "center_lat": metadata.get("center_lat"),
                "center_lon": metadata.get("center_lon"),
                "amsl_m": metadata.get("amsl_m"),
                "agl_m": metadata.get("agl_m"),
                "heading_deg": metadata.get("heading_deg"),
                "yaw_deg": metadata.get("yaw_deg"),
                "pitch_deg": metadata.get("pitch_deg"),
                "roll_deg": metadata.get("roll_deg"),
                "rtk_fix": metadata.get("rtk_fix"),
                "std_h_m": metadata.get("std_h_m"),
                "std_v_m": metadata.get("std_v_m")
            }
        
        return cleaned

# Global instance
schema_validator = SchemaValidator()