Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,583 Bytes
a249588 8b0dccc a249588 6d0261a a249588 8b0dccc a249588 8b0dccc a249588 0ca8706 8b0dccc a249588 8b0dccc a249588 0ca8706 8b0dccc a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
import spaces
from pathlib import Path
import numpy as np
import yaml
from demo.demo_utils import DotDict, concat_instances, filter_instances, pose_nms, visualize_demo
from demo.mm_utils import run_MMDetector, run_MMPose
from mmdet.apis import init_detector
from demo.sam2_utils import prepare_model as prepare_sam2_model
from demo.sam2_utils import process_image_with_SAM
from mmpose.apis import init_model as init_pose_estimator
from mmpose.utils import adapt_mmdet_pipeline
# Default thresholds
DEFAULT_CAT_ID: int = 0
DEFAULT_BBOX_THR: float = 0.3
DEFAULT_NMS_THR: float = 0.3
DEFAULT_KPT_THR: float = 0.3
# Global models variable
det_model = None
pose_model = None
sam2_model = None
def _parse_yaml_config(yaml_path: Path) -> DotDict:
"""
Load BMP configuration from a YAML file.
Args:
yaml_path (Path): Path to YAML config.
Returns:
DotDict: Nested config dictionary.
"""
with open(yaml_path, "r") as f:
cfg = yaml.safe_load(f)
return DotDict(cfg)
def load_models(bmp_config):
device = 'cuda:0'
global det_model, pose_model, sam2_model
# build detectors
det_model = init_detector(bmp_config.detector.det_config, bmp_config.detector.det_checkpoint, device='cpu') # Detect with CPU because of installation issues on HF
det_model.cfg = adapt_mmdet_pipeline(det_model.cfg)
# build pose estimator
pose_model = init_pose_estimator(
bmp_config.pose_estimator.pose_config,
bmp_config.pose_estimator.pose_checkpoint,
device=device,
cfg_options=dict(model=dict(test_cfg=dict(output_heatmaps=False))),
)
sam2_model = prepare_sam2_model(
model_cfg=bmp_config.sam2.sam2_config,
model_checkpoint=bmp_config.sam2.sam2_checkpoint,
)
return det_model, pose_model, sam2_model
@spaces.GPU(duration=60)
def process_image_with_BMP(
img: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Run the full BMP pipeline on a single image: detection, pose, SAM mask refinement, and visualization.
Args:
args (Namespace): Parsed CLI arguments.
bmp_config (DotDict): Configuration parameters.
img_path (Path): Path to the input image.
detector: Primary MMDetection model.
detector_prime: Secondary MMDetection model for iterations.
pose_estimator: MMPose model for keypoint estimation.
sam2_model: SAM model for mask refinement.
Returns:
InstanceData: Final merged detections and refined masks.
"""
bmp_config = _parse_yaml_config(Path("configs/bmp_D3.yaml"))
load_models(bmp_config)
# img: RGB -> BGR
img = img[..., ::-1]
img_for_detection = img.copy()
rtmdet_result = None
all_detections = None
for iteration in range(bmp_config.num_bmp_iters):
# Step 1: Detection
det_instances = run_MMDetector(
det_model,
img_for_detection,
det_cat_id=DEFAULT_CAT_ID,
bbox_thr=DEFAULT_BBOX_THR,
nms_thr=DEFAULT_NMS_THR,
)
if len(det_instances.bboxes) == 0:
continue
# Step 2: Pose estimation
pose_instances = run_MMPose(
pose_model,
img.copy(),
detections=det_instances,
kpt_thr=DEFAULT_KPT_THR,
)
# Restrict to first 17 COCO keypoints
pose_instances.keypoints = pose_instances.keypoints[:, :17, :]
pose_instances.keypoint_scores = pose_instances.keypoint_scores[:, :17]
pose_instances.keypoints = np.concatenate(
[pose_instances.keypoints, pose_instances.keypoint_scores[:, :, None]], axis=-1
)
# Step 3: Pose-NMS and SAM refinement
all_keypoints = (
pose_instances.keypoints
if all_detections is None
else np.concatenate([all_detections.keypoints, pose_instances.keypoints], axis=0)
)
all_bboxes = (
pose_instances.bboxes
if all_detections is None
else np.concatenate([all_detections.bboxes, pose_instances.bboxes], axis=0)
)
num_valid_kpts = np.sum(all_keypoints[:, :, 2] > bmp_config.sam2.prompting.confidence_thr, axis=1)
keep_indices = pose_nms(
DotDict({"confidence_thr": bmp_config.sam2.prompting.confidence_thr, "oks_thr": bmp_config.oks_nms_thr}),
image_kpts=all_keypoints,
image_bboxes=all_bboxes,
num_valid_kpts=num_valid_kpts,
)
keep_indices = sorted(keep_indices) # Sort by original index
num_old_detections = 0 if all_detections is None else len(all_detections.bboxes)
keep_new_indices = [i - num_old_detections for i in keep_indices if i >= num_old_detections]
keep_old_indices = [i for i in keep_indices if i < num_old_detections]
if len(keep_new_indices) == 0:
continue
# filter new detections and compute scores
new_dets = filter_instances(pose_instances, keep_new_indices)
new_dets.scores = pose_instances.keypoint_scores[keep_new_indices].mean(axis=-1)
old_dets = None
if len(keep_old_indices) > 0:
old_dets = filter_instances(all_detections, keep_old_indices)
new_detections = process_image_with_SAM(
DotDict(bmp_config.sam2.prompting),
img.copy(),
sam2_model,
new_dets,
old_dets if old_dets is not None else None,
)
# Merge detections
if all_detections is None:
all_detections = new_detections
else:
all_detections = concat_instances(all_detections, new_dets)
# Step 4: Visualization
img_for_detection, rtmdet_r, _ = visualize_demo(
img.copy(),
all_detections,
)
if iteration == 0:
rtmdet_result = rtmdet_r
_, _, bmp_result = visualize_demo(
img.copy(),
all_detections,
)
# img: BGR -> RGB
rtmdet_result = rtmdet_result[..., ::-1]
bmp_result = bmp_result[..., ::-1]
return rtmdet_result, bmp_result
with gr.Blocks() as app:
gr.Markdown("# BBoxMaskPose Image Demo")
gr.Markdown("### [M. Purkrabek](https://mirapurkrabek.github.io/), [J. Matas](https://cmp.felk.cvut.cz/~matas/)")
gr.Markdown(
"Official demo for paper **Detection, Pose Estimation and Segmentation for Multiple Bodies: Closing the Virtuous Circle.** [ICCV 2025]"
)
gr.Markdown(
"For details, see the [project website](https://mirapurkrabek.github.io/BBox-Mask-Pose/) or [arXiv paper](https://arxiv.org/abs/2412.01562). "
"The demo showcases the capabilities of the BBoxMaskPose framework on any image. "
"If you want to play around with parameters, use the [GitHub demo](https://github.com/MiraPurkrabek/BBoxMaskPose). "
"Please note that due to HuggingFace restrictions, the demo runs much slower than the GitHub implementation."
)
gr.Markdown(
"If you find the project interesting, please like ❤️ the HF demo and star ⭐ the GH repo to help us spread the word."
)
with gr.Row():
with gr.Column():
original_image_input = gr.Image(type="numpy", label="Original Image")
submit_button = gr.Button("Run Inference")
with gr.Column():
output_standard = gr.Image(type="numpy", label="RTMDet-L + MaskPose-B")
with gr.Column():
output_sahi_sliced = gr.Image(type="numpy", label="BBoxMaskPose 2x")
gr.Examples(
label="In-the-Wild Examples",
examples=[
["examples/prochazka_MMA.jpg"],
["examples/riner_judo.jpg"],
["examples/tackle3.jpg"],
["examples/tackle1.jpg"],
["examples/tackle2.jpg"],
["examples/tackle5.jpg"],
["examples/SKV_example1.jpg"],
["examples/SKV_example2.jpg"],
["examples/SKV_example3.jpg"],
["examples/SKV_example4.jpg"],
],
inputs=[
original_image_input,
],
outputs=[output_standard, output_sahi_sliced],
fn=process_image_with_BMP,
cache_examples=True,
)
gr.Examples(
label="OCHuman Examples",
examples=[
["examples/004806.jpg"],
["examples/005056.jpg"],
["examples/004981.jpg"],
["examples/004655.jpg"],
["examples/004684.jpg"],
["examples/004974.jpg"],
["examples/004983.jpg"],
["examples/005017.jpg"],
["examples/004849.jpg"],
["examples/000105.jpg"],
],
inputs=[
original_image_input,
],
outputs=[output_standard, output_sahi_sliced],
fn=process_image_with_BMP,
cache_examples=True,
)
gr.Examples(
label="Failure Cases",
examples=[
["examples/SKV_example_F1.jpg"],
["examples/tackle4.jpg"],
["examples/000061.jpg"],
["examples/000141.jpg"],
["examples/000287.jpg"],
],
inputs=[
original_image_input,
],
outputs=[output_standard, output_sahi_sliced],
fn=process_image_with_BMP,
cache_examples=True,
)
submit_button.click(
fn=process_image_with_BMP,
inputs=[
original_image_input,
],
outputs=[output_standard, output_sahi_sliced],
)
# Launch the demo
app.launch() |