File size: 24,046 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
"""
Utilities for the BMP demo:
- Visualization of detections, masks, and poses
- Mask and bounding-box processing
- Pose non-maximum suppression (NMS)
- Animated GIF creation of demo iterations
"""

import logging
import os
import shutil
import subprocess
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple

import cv2
import numpy as np
from mmengine.logging import print_log
from mmengine.structures import InstanceData
from pycocotools import mask as Mask
from sam2.distinctipy import get_colors
from tqdm import tqdm

### Visualization hyperparameters
MIN_CONTOUR_AREA: int = 50
BBOX_WEIGHT: float = 0.9
MASK_WEIGHT: float = 0.6
BACK_MASK_WEIGHT: float = 0.6
POSE_WEIGHT: float = 0.8


"""
posevis is our custom visualization library for pose estimation. For compatibility, we also provide a lite version that has fewer features but still reproduces visualization from the paper.
"""
try:
    from posevis import pose_visualization
except ImportError:
    from .posevis_lite import pose_visualization


class DotDict(dict):
    """Dictionary with attribute access and nested dict wrapping."""

    def __getattr__(self, name: str) -> any:
        if name in self:
            val = self[name]
            if isinstance(val, dict):
                val = DotDict(val)
                self[name] = val
            return val
        raise AttributeError("No attribute named {!r}".format(name))

    def __setattr__(self, name: str, value: any) -> None:
        self[name] = value

    def __delattr__(self, name: str) -> None:
        if name in self:
            del self[name]
        else:
            raise AttributeError("No attribute named {!r}".format(name))


def filter_instances(instances: InstanceData, indices):
    """
    Return a new InstanceData containing only the entries of 'instances' at the given indices.
    """
    if instances is None:
        return None
    data = {}
    # Attributes to filter
    for attr in [
        "bboxes",
        "bbox_scores",
        "keypoints",
        "keypoint_scores",
        "scores",
        "pred_masks",
        "refined_masks",
        "sam_scores",
        "sam_kpts",
    ]:
        if hasattr(instances, attr):
            arr = getattr(instances, attr)
            data[attr] = arr[indices] if arr is not None else None
    return InstanceData(**data)


def concat_instances(instances1: InstanceData, instances2: InstanceData):
    """
    Concatenate two InstanceData objects along the first axis, preserving order.
    If instances1 or instances2 is None, returns the other.
    """
    if instances1 is None:
        return instances2
    if instances2 is None:
        return instances1
    data = {}
    for attr in [
        "bboxes",
        "bbox_scores",
        "keypoints",
        "keypoint_scores",
        "scores",
        "pred_masks",
        "refined_masks",
        "sam_scores",
        "sam_kpts",
    ]:
        arr1 = getattr(instances1, attr, None)
        arr2 = getattr(instances2, attr, None)
        if arr1 is None and arr2 is None:
            continue
        if arr1 is None:
            data[attr] = arr2
        elif arr2 is None:
            data[attr] = arr1
        else:
            data[attr] = np.concatenate([arr1, arr2], axis=0)
    return InstanceData(**data)


def _visualize_predictions(
    img: np.ndarray,
    bboxes: np.ndarray,
    scores: np.ndarray,
    masks: List[Optional[List[np.ndarray]]],
    poses: List[Optional[np.ndarray]],
    vis_type: str = "mask",
    mask_is_binary: bool = False,
) -> Tuple[np.ndarray, np.ndarray]:
    """
    Render bounding boxes, segmentation masks, and poses on the input image.

    Args:
        img (np.ndarray): BGR image of shape (H, W, 3).
        bboxes (np.ndarray): Array of bounding boxes [x, y, w, h].
        scores (np.ndarray): Confidence scores for each bbox.
        masks (List[Optional[List[np.ndarray]]]): Polygon masks per instance.
        poses (List[Optional[np.ndarray]]): Keypoint arrays per instance.
        vis_type (str): Flags for visualization types separated by '+'.
        mask_is_binary (bool): Whether input masks are binary arrays.

    Returns:
        Tuple[np.ndarray, np.ndarray]: The visualized image and color map.
    """
    vis_types = vis_type.split("+")

    # # Filter-out small detections to make the visualization more clear
    # new_bboxes = []
    # new_scores = []
    # new_masks = []
    # new_poses = []
    # size_thr = img.shape[0] * img.shape[1] * 0.01
    # for bbox, score, mask, pose in zip(bboxes, scores, masks, poses):
    #     area = mask.sum() # Assume binary mask. OK for demo purposes
    #     if area > size_thr:
    #         new_bboxes.append(bbox)
    #         new_scores.append(score)
    #         new_masks.append(mask)
    #         new_poses.append(pose)
    # bboxes = np.array(new_bboxes)
    # scores = np.array(new_scores)
    # masks = new_masks
    # poses = new_poses
    
    if mask_is_binary:
        poly_masks: List[Optional[List[np.ndarray]]] = []
        for binary_mask in masks:
            if binary_mask is not None:
                contours, _ = cv2.findContours(
                    (binary_mask * 255).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
                )
                polys = [cnt.flatten() for cnt in contours if cv2.contourArea(cnt) >= MIN_CONTOUR_AREA]
            else:
                polys = None
            poly_masks.append(polys)
        masks = poly_masks  # type: ignore

    # Exclude white, black, and green colors from the palette as they are not distinctive
    colors = (np.array(get_colors(len(bboxes), exclude_colors=[(0, 1, 0), (.5, .5, .5), (0, 0, 0), (1, 1, 1)], rng=0)) * 255).astype(
        int
    )

    
    if "inv-mask" in vis_types:
        stencil = np.zeros_like(img)

    for bbox, score, mask_poly, pose, color in zip(bboxes, scores, masks, poses, colors):
        bbox = _update_bbox_by_mask(list(map(int, bbox)), mask_poly, img.shape)
        color_list = color.tolist()
        img_copy = img.copy()

        if "bbox" in vis_types:
            x, y, w, h = bbox
            cv2.rectangle(img_copy, (x, y), (x + w, y + h), color_list, 2)
            img = cv2.addWeighted(img, 1 - BBOX_WEIGHT, img_copy, BBOX_WEIGHT, 0)

        if mask_poly is not None and "mask" in vis_types:
            for seg in mask_poly:
                seg_pts = np.array(seg).reshape(-1, 1, 2).astype(int)
                cv2.fillPoly(img_copy, [seg_pts], color_list)
            img = cv2.addWeighted(img, 1 - MASK_WEIGHT, img_copy, MASK_WEIGHT, 0)

        if mask_poly is not None and "mask-out" in vis_types:
            for seg in mask_poly:
                seg_pts = np.array(seg).reshape(-1, 1, 2).astype(int)
                cv2.fillPoly(img, [seg_pts], (0, 0, 0))

        if mask_poly is not None and "inv-mask" in vis_types:
            for seg in mask_poly:
                seg = np.array(seg).reshape(-1, 1, 2).astype(int)
                if cv2.contourArea(seg) < MIN_CONTOUR_AREA:
                    continue
                cv2.fillPoly(stencil, [seg], (255, 255, 255))

        if pose is not None and "pose" in vis_types:
            vis_img = pose_visualization(
                img.copy(),
                pose.reshape(-1, 3),
                width_multiplier=8,
                differ_individuals=True,
                color=color_list,
                keep_image_size=True,
            )
            img = cv2.addWeighted(img, 1 - POSE_WEIGHT, vis_img, POSE_WEIGHT, 0)

    if "inv-mask" in vis_types:
        img = cv2.addWeighted(img, 1 - BACK_MASK_WEIGHT, cv2.bitwise_and(img, stencil), BACK_MASK_WEIGHT, 0)

    return img, colors


def visualize_itteration(
    img: np.ndarray, detections: Any, iteration_idx: int, output_root: Path, img_name: str, with_text: bool = True
) -> Optional[np.ndarray]:
    """
    Generate and save visualization images for each BMP iteration.

    Args:
        img (np.ndarray): Original input image.
        detections: InstanceData containing bboxes, scores, masks, keypoints.
        iteration_idx (int): Current iteration index (0-based).
        output_root (Path): Directory to save output images.
        img_name (str): Base name of the image without extension.
        with_text (bool): Whether to overlay text labels.

    Returns:
        Optional[np.ndarray]: The masked-out image if generated, else None.
    """
    bboxes = detections.bboxes
    scores = detections.scores
    pred_masks = detections.pred_masks
    refined_masks = detections.refined_masks
    keypoints = detections.keypoints
    sam_kpts = detections.sam_kpts

    masked_out = None
    for vis_def in [
        {"type": "bbox+mask", "masks": pred_masks, "label": "Detector (out)"},
        {"type": "inv-mask", "masks": pred_masks, "label": "MaskPose (in)"},
        {"type": "inv-mask+pose", "masks": pred_masks, "label": "MaskPose (out)"},
        {"type": "mask", "masks": refined_masks, "label": "SAM Masks"},
        {"type": "mask-out", "masks": refined_masks, "label": "Mask-Out"},
        {"type": "pose", "masks": refined_masks, "label": "Final Poses"},
    ]:
        vis_img, colors = _visualize_predictions(
            img.copy(), bboxes, scores, vis_def["masks"], keypoints, vis_type=vis_def["type"], mask_is_binary=True
        )
        if vis_def["type"] == "mask-out":
            masked_out = vis_img
        if with_text:
            label = "BMP {:d}x: {}".format(iteration_idx + 1, vis_def["label"])
            cv2.putText(vis_img, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
            cv2.putText(vis_img, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
        out_path = os.path.join(
            output_root, "{}_iter{}_{}.jpg".format(img_name, iteration_idx + 1, vis_def["label"].replace(" ", "_"))
        )
        cv2.imwrite(str(out_path), vis_img)

    # Show prompting keypoints
    tmp_img = img.copy()
    for i, _ in enumerate(bboxes):
        if len(sam_kpts[i]) > 0:
            instance_color = colors[i].astype(int).tolist()
            for kpt in sam_kpts[i]:
                cv2.drawMarker(
                    tmp_img,
                    (int(kpt[0]), int(kpt[1])),
                    instance_color,
                    markerType=cv2.MARKER_CROSS,
                    markerSize=20,
                    thickness=3,
                )
                # Write the keypoint confidence next to the marker
                cv2.putText(
                    tmp_img,
                    f"{kpt[2]:.2f}",
                    (int(kpt[0]) + 10, int(kpt[1]) - 10),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.5,
                    instance_color,
                    1,
                    cv2.LINE_AA,
                )
    if with_text:
        text = "BMP {:d}x: SAM prompts".format(iteration_idx + 1)
        cv2.putText(tmp_img, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3, cv2.LINE_AA)
        cv2.putText(tmp_img, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2, cv2.LINE_AA)
    cv2.imwrite("{:s}/{:s}_iter{:d}_prompting_kpts.jpg".format(output_root, img_name, iteration_idx + 1), tmp_img)

    return masked_out


def visualize_demo(
    img: np.ndarray, detections: Any,
) -> Optional[np.ndarray]:
    """
    Generate and save visualization images for each BMP iteration.

    Args:
        img (np.ndarray): Original input image.
        detections: InstanceData containing bboxes, scores, masks, keypoints.
        iteration_idx (int): Current iteration index (0-based).
        output_root (Path): Directory to save output images.
        img_name (str): Base name of the image without extension.
        with_text (bool): Whether to overlay text labels.

    Returns:
        Optional[np.ndarray]: The masked-out image if generated, else None.
    """
    bboxes = detections.bboxes
    scores = detections.scores
    pred_masks = detections.pred_masks
    refined_masks = detections.refined_masks
    keypoints = detections.keypoints

    returns = []
    for vis_def in [
        {"type": "mask-out", "masks": refined_masks, "label": ""},
        {"type": "mask+pose", "masks": pred_masks, "label": "RTMDet-L"},
        {"type": "mask+pose", "masks": refined_masks, "label": "BMP"},
    ]:
        vis_img, colors = _visualize_predictions(
            img.copy(), bboxes, scores, vis_def["masks"], keypoints, vis_type=vis_def["type"], mask_is_binary=True
        )
        returns.append(vis_img)

    return returns


def create_GIF(
    img_path: Path,
    output_root: Path,
    bmp_x: int = 2,
) -> None:
    """
    Compile iteration images into an animated GIF using ffmpeg.

    Args:
        img_path (Path): Path to a sample iteration image.
        output_root (Path): Directory to save the GIF.
        bmp_x (int): Number of BMP iterations.
        duration_per_frame (int): Frame display duration in ms.

    Raises:
        RuntimeError: If ffmpeg is not available or images are missing.
    """
    display_dur = 1.5  # seconds
    fade_dur = 1.0
    fps = 10
    scale_width = 300  # Resize width for GIF, height will be auto-scaled to maintain aspect ratio

    # Check if ffmpeg is installed. If not, raise warning and return
    if shutil.which("ffmpeg") is None:
        print_log("FFMpeg is not installed. GIF creation will be skipped.", logger="current", level=logging.WARNING)
        return
    print_log("Creating GIF with FFmpeg...", logger="current")

    dirname, filename = os.path.split(img_path)
    img_name_wo_ext, _ = os.path.splitext(filename)

    gif_image_names = [
        "Detector_(out)",
        "MaskPose_(in)",
        "MaskPose_(out)",
        "prompting_kpts",
        "SAM_Masks",
        "Mask-Out",
    ]

    # Create black image of the same size as the last image
    last_img_path = os.path.join(dirname, "{}_iter1_{}".format(img_name_wo_ext, gif_image_names[0]) + ".jpg")
    last_img = cv2.imread(last_img_path)
    if last_img is None:
        print_log("Could not read image {}.".format(last_img_path), logger="current", level=logging.ERROR)
        return
    black_img = np.zeros_like(last_img)
    cv2.imwrite(os.path.join(dirname, "black_image.jpg"), black_img)

    gif_images = []
    for iter in range(bmp_x):
        iter_img_path = os.path.join(dirname, "{}_iter{}_".format(img_name_wo_ext, iter + 1))
        for img_name in gif_image_names:

            if iter + 1 == bmp_x and img_name == "Mask-Out":
                # Skip the last iteration's Mask-Out image
                continue

            img_file = "{}{}.jpg".format(iter_img_path, img_name)
            if not os.path.exists(img_file):
                print_log("{} does not exist, skipping.".format(img_file), logger="current", level=logging.WARNING)
                continue
            gif_images.append(img_file)

    if len(gif_images) == 0:
        print_log("No images found for GIF creation.", logger="current", level=logging.WARNING)
        return

    # Add 'before' and 'after' images
    after1_img = os.path.join(dirname, "{}_iter{}_Final_Poses.jpg".format(img_name_wo_ext, bmp_x))
    after2_img = os.path.join(dirname, "{}_iter{}_SAM_Masks.jpg".format(img_name_wo_ext, bmp_x))
    # gif_images.append(os.path.join(dirname, "black_image.jpg"))  # Add black image at the end
    gif_images.append(after1_img)
    gif_images.append(after2_img)
    gif_images.append(os.path.join(dirname, "black_image.jpg"))  # Add black image at the end

    # Create a GIF from the images
    gif_output_path = os.path.join(output_root, "{}_bmp_{}x.gif".format(img_name_wo_ext, bmp_x))

    # 0. Make sure images exist and are divisible by 2
    for img in gif_images:
        if not os.path.exists(img):
            print_log("Image {} does not exist, skipping GIF creation.".format(img), logger="current", level=logging.WARNING)
            return
        # Check if image dimensions are divisible by 2
        img_data = cv2.imread(img)
        if img_data.shape[1] % 2 != 0 or img_data.shape[0] % 2 != 0:
            print_log(
                "Image {} dimensions are not divisible by 2, resizing.".format(img),
                logger="current",
                level=logging.WARNING,
            )
            resized_img = cv2.resize(img_data, (img_data.shape[1] // 2 * 2, img_data.shape[0] // 2 * 2))
            cv2.imwrite(img, resized_img)

    # 1. inputs
    in_args = []
    for p in gif_images:
        in_args += ["-loop", "1", "-t", str(display_dur), "-i", p]

    # 2. build xfade chain
    n = len(gif_images)
    parts = []
    for i in range(1, n):
        # left label: first is input [0:v], then [v1], [v2], …
        left = "[{}:v]".format(i - 1) if i == 1 else "[v{}]".format(i - 1)
        right = "[{}:v]".format(i)
        out = "[v{}]".format(i)
        offset = (i - 1) * (display_dur + fade_dur) + display_dur
        parts.append(
            "{}{}xfade=transition=fade:".format(left, right)
            + "duration={}:offset={:.3f}{}".format(fade_dur, offset, out)
        )
    filter_complex = ";".join(parts)

    # 3. make MP4 slideshow
    mp4 = "slideshow.mp4"
    cmd1 = [
        "ffmpeg",
        "-loglevel",
        "error",
        "-v",
        "quiet",
        "-hide_banner",
        "-y",
        *in_args,
        "-filter_complex",
        filter_complex,
        "-map",
        "[v{}]".format(n - 1),
        "-c:v",
        "libx264",
        "-pix_fmt",
        "yuv420p",
        mp4,
    ]
    subprocess.run(cmd1, check=True)

    # 4. palette
    palette = "palette.png"
    vf = "fps={}".format(fps)
    if scale_width:
        vf += ",scale={}: -1:flags=lanczos".format(scale_width)

    # 5. generate palette
    subprocess.run(
        [
            "ffmpeg",
            "-loglevel",
            "error",
            "-v",
            "quiet",
            "-hide_banner",
            "-y",
            "-i",
            mp4,
            "-vf",
            vf + ",palettegen",
            palette,
        ],
        check=True,
        stdout=subprocess.DEVNULL,
        stderr=subprocess.PIPE,
    )

    # 6. build final GIF
    subprocess.run(
        [
            "ffmpeg",
            "-loglevel",
            "error",
            "-v",
            "quiet",
            "-hide_banner",
            "-y",
            "-i",
            mp4,
            "-i",
            palette,
            "-lavfi",
            vf + "[x];[x][1:v]paletteuse",
            gif_output_path,
        ],
        check=True,
        stdout=subprocess.DEVNULL,
        stderr=subprocess.PIPE,
    )

    # Clean up temporary files
    os.remove(mp4)
    os.remove(palette)
    os.remove(os.path.join(dirname, "black_image.jpg"))

    print_log(f"GIF saved as '{gif_output_path}'", logger="current")


def _update_bbox_by_mask(
    bbox: List[int], mask_poly: Optional[List[List[int]]], image_shape: Tuple[int, int, int]
) -> List[int]:
    """
    Adjust bounding box to tightly fit mask polygon.

    Args:
        bbox (List[int]): Original [x, y, w, h].
        mask_poly (Optional[List[List[int]]]): Polygon coordinates.
        image_shape (Tuple[int,int,int]): Image shape (H, W, C).

    Returns:
        List[int]: Updated [x, y, w, h] bounding box.
    """
    if mask_poly is None or len(mask_poly) == 0:
        return bbox

    mask_rle = Mask.frPyObjects(mask_poly, image_shape[0], image_shape[1])
    mask_rle = Mask.merge(mask_rle)
    bbox_segm_xywh = Mask.toBbox(mask_rle)
    bbox_segm_xyxy = np.array(
        [
            bbox_segm_xywh[0],
            bbox_segm_xywh[1],
            bbox_segm_xywh[0] + bbox_segm_xywh[2],
            bbox_segm_xywh[1] + bbox_segm_xywh[3],
        ]
    )

    bbox = bbox_segm_xywh

    return bbox.astype(int).tolist()


def pose_nms(config: Any, image_kpts: np.ndarray, image_bboxes: np.ndarray, num_valid_kpts: np.ndarray) -> np.ndarray:
    """
    Perform OKS-based non-maximum suppression on detected poses.

    Args:
        config (Any): Configuration with confidence_thr and oks_thr.
        image_kpts (np.ndarray): Detected keypoints of shape (N, K, 3).
        image_bboxes (np.ndarray): Corresponding bboxes (N,4).
        num_valid_kpts (np.ndarray): Count of valid keypoints per instance.

    Returns:
        np.ndarray: Indices of kept instances.
    """
    # Sort image kpts by average score - lowest first
    # scores = image_kpts[:, :, 2].mean(axis=1)
    # sort_idx = np.argsort(scores)
    # image_kpts = image_kpts[sort_idx, :, :]

    # Compute OKS between all pairs of poses
    oks_matrix = np.zeros((image_kpts.shape[0], image_kpts.shape[0]))
    for i in range(image_kpts.shape[0]):
        for j in range(image_kpts.shape[0]):
            gt_bbox_xywh = image_bboxes[i].copy()
            gt_bbox_xyxy = gt_bbox_xywh.copy()
            gt_bbox_xyxy[2:] += gt_bbox_xyxy[:2]
            gt = {
                "keypoints": image_kpts[i].copy(),
                "bbox": gt_bbox_xyxy,
                "area": gt_bbox_xywh[2] * gt_bbox_xywh[3],
            }
            dt = {"keypoints": image_kpts[j].copy(), "bbox": gt_bbox_xyxy}
            gt["keypoints"][:, 2] = (gt["keypoints"][:, 2] > config.confidence_thr) * 2
            oks = compute_oks(gt, dt)
            if oks > 1:
                breakpoint()
            oks_matrix[i, j] = oks

    np.fill_diagonal(oks_matrix, -1)
    is_subset = oks_matrix > config.oks_thr

    remove_instances = []
    while is_subset.any():
        # Find the pair with the highest OKS
        i, j = np.unravel_index(np.argmax(oks_matrix), oks_matrix.shape)

        # Keep the one with the highest number of keypoints
        if num_valid_kpts[i] > num_valid_kpts[j]:
            remove_idx = j
        else:
            remove_idx = i

        # Remove the column from is_subset
        oks_matrix[:, remove_idx] = 0
        oks_matrix[remove_idx, j] = 0
        remove_instances.append(remove_idx)
        is_subset = oks_matrix > config.oks_thr

    keep_instances = np.setdiff1d(np.arange(image_kpts.shape[0]), remove_instances)

    return keep_instances


def compute_oks(gt: Dict[str, Any], dt: Dict[str, Any], use_area: bool = True, per_kpt: bool = False) -> float:
    """
    Compute Object Keypoint Similarity (OKS) between ground-truth and detected poses.

    Args:
        gt (Dict): Ground-truth keypoints and bbox info.
        dt (Dict): Detected keypoints and bbox info.
        use_area (bool): Whether to normalize by GT area.
        per_kpt (bool): Whether to return per-keypoint OKS array.

    Returns:
        float: OKS score or mean OKS.
    """
    sigmas = (
        np.array([0.26, 0.25, 0.25, 0.35, 0.35, 0.79, 0.79, 0.72, 0.72, 0.62, 0.62, 1.07, 1.07, 0.87, 0.87, 0.89, 0.89])
        / 10.0
    )
    vars = (sigmas * 2) ** 2
    k = len(sigmas)
    visibility_condition = lambda x: x > 0
    g = np.array(gt["keypoints"]).reshape(k, 3)
    xg = g[:, 0]
    yg = g[:, 1]
    vg = g[:, 2]
    k1 = np.count_nonzero(visibility_condition(vg))
    bb = gt["bbox"]
    x0 = bb[0] - bb[2]
    x1 = bb[0] + bb[2] * 2
    y0 = bb[1] - bb[3]
    y1 = bb[1] + bb[3] * 2

    d = np.array(dt["keypoints"]).reshape((k, 3))
    xd = d[:, 0]
    yd = d[:, 1]

    if k1 > 0:
        # measure the per-keypoint distance if keypoints visible
        dx = xd - xg
        dy = yd - yg

    else:
        # measure minimum distance to keypoints in (x0,y0) & (x1,y1)
        z = np.zeros((k))
        dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0)
        dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0)

    if use_area:
        e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2
    else:
        tmparea = gt["bbox"][3] * gt["bbox"][2] * 0.53
        e = (dx**2 + dy**2) / vars / (tmparea + np.spacing(1)) / 2

    if per_kpt:
        oks = np.exp(-e)
        if k1 > 0:
            oks[~visibility_condition(vg)] = 0

    else:
        if k1 > 0:
            e = e[visibility_condition(vg)]
        oks = np.sum(np.exp(-e)) / e.shape[0]

    return oks