Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,046 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
"""
Utilities for the BMP demo:
- Visualization of detections, masks, and poses
- Mask and bounding-box processing
- Pose non-maximum suppression (NMS)
- Animated GIF creation of demo iterations
"""
import logging
import os
import shutil
import subprocess
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import cv2
import numpy as np
from mmengine.logging import print_log
from mmengine.structures import InstanceData
from pycocotools import mask as Mask
from sam2.distinctipy import get_colors
from tqdm import tqdm
### Visualization hyperparameters
MIN_CONTOUR_AREA: int = 50
BBOX_WEIGHT: float = 0.9
MASK_WEIGHT: float = 0.6
BACK_MASK_WEIGHT: float = 0.6
POSE_WEIGHT: float = 0.8
"""
posevis is our custom visualization library for pose estimation. For compatibility, we also provide a lite version that has fewer features but still reproduces visualization from the paper.
"""
try:
from posevis import pose_visualization
except ImportError:
from .posevis_lite import pose_visualization
class DotDict(dict):
"""Dictionary with attribute access and nested dict wrapping."""
def __getattr__(self, name: str) -> any:
if name in self:
val = self[name]
if isinstance(val, dict):
val = DotDict(val)
self[name] = val
return val
raise AttributeError("No attribute named {!r}".format(name))
def __setattr__(self, name: str, value: any) -> None:
self[name] = value
def __delattr__(self, name: str) -> None:
if name in self:
del self[name]
else:
raise AttributeError("No attribute named {!r}".format(name))
def filter_instances(instances: InstanceData, indices):
"""
Return a new InstanceData containing only the entries of 'instances' at the given indices.
"""
if instances is None:
return None
data = {}
# Attributes to filter
for attr in [
"bboxes",
"bbox_scores",
"keypoints",
"keypoint_scores",
"scores",
"pred_masks",
"refined_masks",
"sam_scores",
"sam_kpts",
]:
if hasattr(instances, attr):
arr = getattr(instances, attr)
data[attr] = arr[indices] if arr is not None else None
return InstanceData(**data)
def concat_instances(instances1: InstanceData, instances2: InstanceData):
"""
Concatenate two InstanceData objects along the first axis, preserving order.
If instances1 or instances2 is None, returns the other.
"""
if instances1 is None:
return instances2
if instances2 is None:
return instances1
data = {}
for attr in [
"bboxes",
"bbox_scores",
"keypoints",
"keypoint_scores",
"scores",
"pred_masks",
"refined_masks",
"sam_scores",
"sam_kpts",
]:
arr1 = getattr(instances1, attr, None)
arr2 = getattr(instances2, attr, None)
if arr1 is None and arr2 is None:
continue
if arr1 is None:
data[attr] = arr2
elif arr2 is None:
data[attr] = arr1
else:
data[attr] = np.concatenate([arr1, arr2], axis=0)
return InstanceData(**data)
def _visualize_predictions(
img: np.ndarray,
bboxes: np.ndarray,
scores: np.ndarray,
masks: List[Optional[List[np.ndarray]]],
poses: List[Optional[np.ndarray]],
vis_type: str = "mask",
mask_is_binary: bool = False,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Render bounding boxes, segmentation masks, and poses on the input image.
Args:
img (np.ndarray): BGR image of shape (H, W, 3).
bboxes (np.ndarray): Array of bounding boxes [x, y, w, h].
scores (np.ndarray): Confidence scores for each bbox.
masks (List[Optional[List[np.ndarray]]]): Polygon masks per instance.
poses (List[Optional[np.ndarray]]): Keypoint arrays per instance.
vis_type (str): Flags for visualization types separated by '+'.
mask_is_binary (bool): Whether input masks are binary arrays.
Returns:
Tuple[np.ndarray, np.ndarray]: The visualized image and color map.
"""
vis_types = vis_type.split("+")
# # Filter-out small detections to make the visualization more clear
# new_bboxes = []
# new_scores = []
# new_masks = []
# new_poses = []
# size_thr = img.shape[0] * img.shape[1] * 0.01
# for bbox, score, mask, pose in zip(bboxes, scores, masks, poses):
# area = mask.sum() # Assume binary mask. OK for demo purposes
# if area > size_thr:
# new_bboxes.append(bbox)
# new_scores.append(score)
# new_masks.append(mask)
# new_poses.append(pose)
# bboxes = np.array(new_bboxes)
# scores = np.array(new_scores)
# masks = new_masks
# poses = new_poses
if mask_is_binary:
poly_masks: List[Optional[List[np.ndarray]]] = []
for binary_mask in masks:
if binary_mask is not None:
contours, _ = cv2.findContours(
(binary_mask * 255).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
polys = [cnt.flatten() for cnt in contours if cv2.contourArea(cnt) >= MIN_CONTOUR_AREA]
else:
polys = None
poly_masks.append(polys)
masks = poly_masks # type: ignore
# Exclude white, black, and green colors from the palette as they are not distinctive
colors = (np.array(get_colors(len(bboxes), exclude_colors=[(0, 1, 0), (.5, .5, .5), (0, 0, 0), (1, 1, 1)], rng=0)) * 255).astype(
int
)
if "inv-mask" in vis_types:
stencil = np.zeros_like(img)
for bbox, score, mask_poly, pose, color in zip(bboxes, scores, masks, poses, colors):
bbox = _update_bbox_by_mask(list(map(int, bbox)), mask_poly, img.shape)
color_list = color.tolist()
img_copy = img.copy()
if "bbox" in vis_types:
x, y, w, h = bbox
cv2.rectangle(img_copy, (x, y), (x + w, y + h), color_list, 2)
img = cv2.addWeighted(img, 1 - BBOX_WEIGHT, img_copy, BBOX_WEIGHT, 0)
if mask_poly is not None and "mask" in vis_types:
for seg in mask_poly:
seg_pts = np.array(seg).reshape(-1, 1, 2).astype(int)
cv2.fillPoly(img_copy, [seg_pts], color_list)
img = cv2.addWeighted(img, 1 - MASK_WEIGHT, img_copy, MASK_WEIGHT, 0)
if mask_poly is not None and "mask-out" in vis_types:
for seg in mask_poly:
seg_pts = np.array(seg).reshape(-1, 1, 2).astype(int)
cv2.fillPoly(img, [seg_pts], (0, 0, 0))
if mask_poly is not None and "inv-mask" in vis_types:
for seg in mask_poly:
seg = np.array(seg).reshape(-1, 1, 2).astype(int)
if cv2.contourArea(seg) < MIN_CONTOUR_AREA:
continue
cv2.fillPoly(stencil, [seg], (255, 255, 255))
if pose is not None and "pose" in vis_types:
vis_img = pose_visualization(
img.copy(),
pose.reshape(-1, 3),
width_multiplier=8,
differ_individuals=True,
color=color_list,
keep_image_size=True,
)
img = cv2.addWeighted(img, 1 - POSE_WEIGHT, vis_img, POSE_WEIGHT, 0)
if "inv-mask" in vis_types:
img = cv2.addWeighted(img, 1 - BACK_MASK_WEIGHT, cv2.bitwise_and(img, stencil), BACK_MASK_WEIGHT, 0)
return img, colors
def visualize_itteration(
img: np.ndarray, detections: Any, iteration_idx: int, output_root: Path, img_name: str, with_text: bool = True
) -> Optional[np.ndarray]:
"""
Generate and save visualization images for each BMP iteration.
Args:
img (np.ndarray): Original input image.
detections: InstanceData containing bboxes, scores, masks, keypoints.
iteration_idx (int): Current iteration index (0-based).
output_root (Path): Directory to save output images.
img_name (str): Base name of the image without extension.
with_text (bool): Whether to overlay text labels.
Returns:
Optional[np.ndarray]: The masked-out image if generated, else None.
"""
bboxes = detections.bboxes
scores = detections.scores
pred_masks = detections.pred_masks
refined_masks = detections.refined_masks
keypoints = detections.keypoints
sam_kpts = detections.sam_kpts
masked_out = None
for vis_def in [
{"type": "bbox+mask", "masks": pred_masks, "label": "Detector (out)"},
{"type": "inv-mask", "masks": pred_masks, "label": "MaskPose (in)"},
{"type": "inv-mask+pose", "masks": pred_masks, "label": "MaskPose (out)"},
{"type": "mask", "masks": refined_masks, "label": "SAM Masks"},
{"type": "mask-out", "masks": refined_masks, "label": "Mask-Out"},
{"type": "pose", "masks": refined_masks, "label": "Final Poses"},
]:
vis_img, colors = _visualize_predictions(
img.copy(), bboxes, scores, vis_def["masks"], keypoints, vis_type=vis_def["type"], mask_is_binary=True
)
if vis_def["type"] == "mask-out":
masked_out = vis_img
if with_text:
label = "BMP {:d}x: {}".format(iteration_idx + 1, vis_def["label"])
cv2.putText(vis_img, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3)
cv2.putText(vis_img, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
out_path = os.path.join(
output_root, "{}_iter{}_{}.jpg".format(img_name, iteration_idx + 1, vis_def["label"].replace(" ", "_"))
)
cv2.imwrite(str(out_path), vis_img)
# Show prompting keypoints
tmp_img = img.copy()
for i, _ in enumerate(bboxes):
if len(sam_kpts[i]) > 0:
instance_color = colors[i].astype(int).tolist()
for kpt in sam_kpts[i]:
cv2.drawMarker(
tmp_img,
(int(kpt[0]), int(kpt[1])),
instance_color,
markerType=cv2.MARKER_CROSS,
markerSize=20,
thickness=3,
)
# Write the keypoint confidence next to the marker
cv2.putText(
tmp_img,
f"{kpt[2]:.2f}",
(int(kpt[0]) + 10, int(kpt[1]) - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
instance_color,
1,
cv2.LINE_AA,
)
if with_text:
text = "BMP {:d}x: SAM prompts".format(iteration_idx + 1)
cv2.putText(tmp_img, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 3, cv2.LINE_AA)
cv2.putText(tmp_img, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2, cv2.LINE_AA)
cv2.imwrite("{:s}/{:s}_iter{:d}_prompting_kpts.jpg".format(output_root, img_name, iteration_idx + 1), tmp_img)
return masked_out
def visualize_demo(
img: np.ndarray, detections: Any,
) -> Optional[np.ndarray]:
"""
Generate and save visualization images for each BMP iteration.
Args:
img (np.ndarray): Original input image.
detections: InstanceData containing bboxes, scores, masks, keypoints.
iteration_idx (int): Current iteration index (0-based).
output_root (Path): Directory to save output images.
img_name (str): Base name of the image without extension.
with_text (bool): Whether to overlay text labels.
Returns:
Optional[np.ndarray]: The masked-out image if generated, else None.
"""
bboxes = detections.bboxes
scores = detections.scores
pred_masks = detections.pred_masks
refined_masks = detections.refined_masks
keypoints = detections.keypoints
returns = []
for vis_def in [
{"type": "mask-out", "masks": refined_masks, "label": ""},
{"type": "mask+pose", "masks": pred_masks, "label": "RTMDet-L"},
{"type": "mask+pose", "masks": refined_masks, "label": "BMP"},
]:
vis_img, colors = _visualize_predictions(
img.copy(), bboxes, scores, vis_def["masks"], keypoints, vis_type=vis_def["type"], mask_is_binary=True
)
returns.append(vis_img)
return returns
def create_GIF(
img_path: Path,
output_root: Path,
bmp_x: int = 2,
) -> None:
"""
Compile iteration images into an animated GIF using ffmpeg.
Args:
img_path (Path): Path to a sample iteration image.
output_root (Path): Directory to save the GIF.
bmp_x (int): Number of BMP iterations.
duration_per_frame (int): Frame display duration in ms.
Raises:
RuntimeError: If ffmpeg is not available or images are missing.
"""
display_dur = 1.5 # seconds
fade_dur = 1.0
fps = 10
scale_width = 300 # Resize width for GIF, height will be auto-scaled to maintain aspect ratio
# Check if ffmpeg is installed. If not, raise warning and return
if shutil.which("ffmpeg") is None:
print_log("FFMpeg is not installed. GIF creation will be skipped.", logger="current", level=logging.WARNING)
return
print_log("Creating GIF with FFmpeg...", logger="current")
dirname, filename = os.path.split(img_path)
img_name_wo_ext, _ = os.path.splitext(filename)
gif_image_names = [
"Detector_(out)",
"MaskPose_(in)",
"MaskPose_(out)",
"prompting_kpts",
"SAM_Masks",
"Mask-Out",
]
# Create black image of the same size as the last image
last_img_path = os.path.join(dirname, "{}_iter1_{}".format(img_name_wo_ext, gif_image_names[0]) + ".jpg")
last_img = cv2.imread(last_img_path)
if last_img is None:
print_log("Could not read image {}.".format(last_img_path), logger="current", level=logging.ERROR)
return
black_img = np.zeros_like(last_img)
cv2.imwrite(os.path.join(dirname, "black_image.jpg"), black_img)
gif_images = []
for iter in range(bmp_x):
iter_img_path = os.path.join(dirname, "{}_iter{}_".format(img_name_wo_ext, iter + 1))
for img_name in gif_image_names:
if iter + 1 == bmp_x and img_name == "Mask-Out":
# Skip the last iteration's Mask-Out image
continue
img_file = "{}{}.jpg".format(iter_img_path, img_name)
if not os.path.exists(img_file):
print_log("{} does not exist, skipping.".format(img_file), logger="current", level=logging.WARNING)
continue
gif_images.append(img_file)
if len(gif_images) == 0:
print_log("No images found for GIF creation.", logger="current", level=logging.WARNING)
return
# Add 'before' and 'after' images
after1_img = os.path.join(dirname, "{}_iter{}_Final_Poses.jpg".format(img_name_wo_ext, bmp_x))
after2_img = os.path.join(dirname, "{}_iter{}_SAM_Masks.jpg".format(img_name_wo_ext, bmp_x))
# gif_images.append(os.path.join(dirname, "black_image.jpg")) # Add black image at the end
gif_images.append(after1_img)
gif_images.append(after2_img)
gif_images.append(os.path.join(dirname, "black_image.jpg")) # Add black image at the end
# Create a GIF from the images
gif_output_path = os.path.join(output_root, "{}_bmp_{}x.gif".format(img_name_wo_ext, bmp_x))
# 0. Make sure images exist and are divisible by 2
for img in gif_images:
if not os.path.exists(img):
print_log("Image {} does not exist, skipping GIF creation.".format(img), logger="current", level=logging.WARNING)
return
# Check if image dimensions are divisible by 2
img_data = cv2.imread(img)
if img_data.shape[1] % 2 != 0 or img_data.shape[0] % 2 != 0:
print_log(
"Image {} dimensions are not divisible by 2, resizing.".format(img),
logger="current",
level=logging.WARNING,
)
resized_img = cv2.resize(img_data, (img_data.shape[1] // 2 * 2, img_data.shape[0] // 2 * 2))
cv2.imwrite(img, resized_img)
# 1. inputs
in_args = []
for p in gif_images:
in_args += ["-loop", "1", "-t", str(display_dur), "-i", p]
# 2. build xfade chain
n = len(gif_images)
parts = []
for i in range(1, n):
# left label: first is input [0:v], then [v1], [v2], …
left = "[{}:v]".format(i - 1) if i == 1 else "[v{}]".format(i - 1)
right = "[{}:v]".format(i)
out = "[v{}]".format(i)
offset = (i - 1) * (display_dur + fade_dur) + display_dur
parts.append(
"{}{}xfade=transition=fade:".format(left, right)
+ "duration={}:offset={:.3f}{}".format(fade_dur, offset, out)
)
filter_complex = ";".join(parts)
# 3. make MP4 slideshow
mp4 = "slideshow.mp4"
cmd1 = [
"ffmpeg",
"-loglevel",
"error",
"-v",
"quiet",
"-hide_banner",
"-y",
*in_args,
"-filter_complex",
filter_complex,
"-map",
"[v{}]".format(n - 1),
"-c:v",
"libx264",
"-pix_fmt",
"yuv420p",
mp4,
]
subprocess.run(cmd1, check=True)
# 4. palette
palette = "palette.png"
vf = "fps={}".format(fps)
if scale_width:
vf += ",scale={}: -1:flags=lanczos".format(scale_width)
# 5. generate palette
subprocess.run(
[
"ffmpeg",
"-loglevel",
"error",
"-v",
"quiet",
"-hide_banner",
"-y",
"-i",
mp4,
"-vf",
vf + ",palettegen",
palette,
],
check=True,
stdout=subprocess.DEVNULL,
stderr=subprocess.PIPE,
)
# 6. build final GIF
subprocess.run(
[
"ffmpeg",
"-loglevel",
"error",
"-v",
"quiet",
"-hide_banner",
"-y",
"-i",
mp4,
"-i",
palette,
"-lavfi",
vf + "[x];[x][1:v]paletteuse",
gif_output_path,
],
check=True,
stdout=subprocess.DEVNULL,
stderr=subprocess.PIPE,
)
# Clean up temporary files
os.remove(mp4)
os.remove(palette)
os.remove(os.path.join(dirname, "black_image.jpg"))
print_log(f"GIF saved as '{gif_output_path}'", logger="current")
def _update_bbox_by_mask(
bbox: List[int], mask_poly: Optional[List[List[int]]], image_shape: Tuple[int, int, int]
) -> List[int]:
"""
Adjust bounding box to tightly fit mask polygon.
Args:
bbox (List[int]): Original [x, y, w, h].
mask_poly (Optional[List[List[int]]]): Polygon coordinates.
image_shape (Tuple[int,int,int]): Image shape (H, W, C).
Returns:
List[int]: Updated [x, y, w, h] bounding box.
"""
if mask_poly is None or len(mask_poly) == 0:
return bbox
mask_rle = Mask.frPyObjects(mask_poly, image_shape[0], image_shape[1])
mask_rle = Mask.merge(mask_rle)
bbox_segm_xywh = Mask.toBbox(mask_rle)
bbox_segm_xyxy = np.array(
[
bbox_segm_xywh[0],
bbox_segm_xywh[1],
bbox_segm_xywh[0] + bbox_segm_xywh[2],
bbox_segm_xywh[1] + bbox_segm_xywh[3],
]
)
bbox = bbox_segm_xywh
return bbox.astype(int).tolist()
def pose_nms(config: Any, image_kpts: np.ndarray, image_bboxes: np.ndarray, num_valid_kpts: np.ndarray) -> np.ndarray:
"""
Perform OKS-based non-maximum suppression on detected poses.
Args:
config (Any): Configuration with confidence_thr and oks_thr.
image_kpts (np.ndarray): Detected keypoints of shape (N, K, 3).
image_bboxes (np.ndarray): Corresponding bboxes (N,4).
num_valid_kpts (np.ndarray): Count of valid keypoints per instance.
Returns:
np.ndarray: Indices of kept instances.
"""
# Sort image kpts by average score - lowest first
# scores = image_kpts[:, :, 2].mean(axis=1)
# sort_idx = np.argsort(scores)
# image_kpts = image_kpts[sort_idx, :, :]
# Compute OKS between all pairs of poses
oks_matrix = np.zeros((image_kpts.shape[0], image_kpts.shape[0]))
for i in range(image_kpts.shape[0]):
for j in range(image_kpts.shape[0]):
gt_bbox_xywh = image_bboxes[i].copy()
gt_bbox_xyxy = gt_bbox_xywh.copy()
gt_bbox_xyxy[2:] += gt_bbox_xyxy[:2]
gt = {
"keypoints": image_kpts[i].copy(),
"bbox": gt_bbox_xyxy,
"area": gt_bbox_xywh[2] * gt_bbox_xywh[3],
}
dt = {"keypoints": image_kpts[j].copy(), "bbox": gt_bbox_xyxy}
gt["keypoints"][:, 2] = (gt["keypoints"][:, 2] > config.confidence_thr) * 2
oks = compute_oks(gt, dt)
if oks > 1:
breakpoint()
oks_matrix[i, j] = oks
np.fill_diagonal(oks_matrix, -1)
is_subset = oks_matrix > config.oks_thr
remove_instances = []
while is_subset.any():
# Find the pair with the highest OKS
i, j = np.unravel_index(np.argmax(oks_matrix), oks_matrix.shape)
# Keep the one with the highest number of keypoints
if num_valid_kpts[i] > num_valid_kpts[j]:
remove_idx = j
else:
remove_idx = i
# Remove the column from is_subset
oks_matrix[:, remove_idx] = 0
oks_matrix[remove_idx, j] = 0
remove_instances.append(remove_idx)
is_subset = oks_matrix > config.oks_thr
keep_instances = np.setdiff1d(np.arange(image_kpts.shape[0]), remove_instances)
return keep_instances
def compute_oks(gt: Dict[str, Any], dt: Dict[str, Any], use_area: bool = True, per_kpt: bool = False) -> float:
"""
Compute Object Keypoint Similarity (OKS) between ground-truth and detected poses.
Args:
gt (Dict): Ground-truth keypoints and bbox info.
dt (Dict): Detected keypoints and bbox info.
use_area (bool): Whether to normalize by GT area.
per_kpt (bool): Whether to return per-keypoint OKS array.
Returns:
float: OKS score or mean OKS.
"""
sigmas = (
np.array([0.26, 0.25, 0.25, 0.35, 0.35, 0.79, 0.79, 0.72, 0.72, 0.62, 0.62, 1.07, 1.07, 0.87, 0.87, 0.89, 0.89])
/ 10.0
)
vars = (sigmas * 2) ** 2
k = len(sigmas)
visibility_condition = lambda x: x > 0
g = np.array(gt["keypoints"]).reshape(k, 3)
xg = g[:, 0]
yg = g[:, 1]
vg = g[:, 2]
k1 = np.count_nonzero(visibility_condition(vg))
bb = gt["bbox"]
x0 = bb[0] - bb[2]
x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]
y1 = bb[1] + bb[3] * 2
d = np.array(dt["keypoints"]).reshape((k, 3))
xd = d[:, 0]
yd = d[:, 1]
if k1 > 0:
# measure the per-keypoint distance if keypoints visible
dx = xd - xg
dy = yd - yg
else:
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
z = np.zeros((k))
dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0)
dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0)
if use_area:
e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2
else:
tmparea = gt["bbox"][3] * gt["bbox"][2] * 0.53
e = (dx**2 + dy**2) / vars / (tmparea + np.spacing(1)) / 2
if per_kpt:
oks = np.exp(-e)
if k1 > 0:
oks[~visibility_condition(vg)] = 0
else:
if k1 > 0:
e = e[visibility_condition(vg)]
oks = np.sum(np.exp(-e)) / e.shape[0]
return oks
|