Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,966 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
"""
SAM2 utilities for BMP demo:
- Build and prepare SAM model
- Convert poses to segmentation
- Compute mask-pose consistency
"""
from typing import Any, List, Optional, Tuple
import numpy as np
import torch
from mmengine.structures import InstanceData
from pycocotools import mask as Mask
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Threshold for keypoint validity in mask-pose consistency
STRICT_KPT_THRESHOLD: float = 0.5
def _validate_sam_args(sam_args):
"""
Validate that all required sam_args attributes are present.
"""
required = [
"crop",
"use_bbox",
"confidence_thr",
"ignore_small_bboxes",
"num_pos_keypoints",
"num_pos_keypoints_if_crowd",
"crowd_by_max_iou",
"batch",
"exclusive_masks",
"extend_bbox",
"pose_mask_consistency",
"visibility_thr",
]
for param in required:
if not hasattr(sam_args, param):
raise AttributeError(f"Missing required arg {param} in sam_args")
def _get_max_ious(bboxes: List[np.ndarray]) -> np.ndarray:
"""
Compute maximum IoU for each bbox against others.
"""
is_crowd = [0] * len(bboxes)
ious = Mask.iou(bboxes, bboxes, is_crowd)
mat = np.array(ious)
np.fill_diagonal(mat, 0)
return mat.max(axis=1)
def _compute_one_mask_pose_consistency(
mask: np.ndarray, pos_keypoints: Optional[np.ndarray] = None, neg_keypoints: Optional[np.ndarray] = None
) -> float:
"""
Compute a consistency score between a mask and given keypoints.
Args:
mask (np.ndarray): Binary mask of shape (H, W).
pos_keypoints (Optional[np.ndarray]): Positive keypoints array (N, 3).
neg_keypoints (Optional[np.ndarray]): Negative keypoints array (M, 3).
Returns:
float: Weighted mean of positive and negative keypoint consistency.
"""
if mask is None:
return 0.0
def _mean_inside(points: np.ndarray) -> float:
if points.size == 0:
return 0.0
pts_int = np.floor(points[:, :2]).astype(int)
pts_int[:, 0] = np.clip(pts_int[:, 0], 0, mask.shape[1] - 1)
pts_int[:, 1] = np.clip(pts_int[:, 1], 0, mask.shape[0] - 1)
vals = mask[pts_int[:, 1], pts_int[:, 0]]
return vals.mean() if vals.size > 0 else 0.0
pos_mean = 0.0
if pos_keypoints is not None:
valid = pos_keypoints[:, 2] > STRICT_KPT_THRESHOLD
pos_mean = _mean_inside(pos_keypoints[valid])
neg_mean = 0.0
if neg_keypoints is not None:
valid = neg_keypoints[:, 2] > STRICT_KPT_THRESHOLD
pts = neg_keypoints[valid][:, :2]
inside = mask[np.floor(pts[:, 1]).astype(int), np.floor(pts[:, 0]).astype(int)]
neg_mean = (~inside.astype(bool)).mean() if inside.size > 0 else 0.0
return 0.5 * pos_mean + 0.5 * neg_mean
def _select_keypoints(
args: Any,
kpts: np.ndarray,
num_visible: int,
bbox: Optional[Tuple[float, float, float, float]] = None,
method: Optional[str] = "distance+confidence",
) -> Tuple[np.ndarray, np.ndarray]:
"""
Select and order keypoints for SAM prompting based on specified method.
Args:
args: Configuration object with selection_method and visibility_thr attributes.
kpts (np.ndarray): Keypoints array of shape (K, 3).
num_visible (int): Number of keypoints above visibility threshold.
bbox (Optional[Tuple]): Optional bbox for distance methods.
method (Optional[str]): Override selection method.
Returns:
Tuple[np.ndarray, np.ndarray]: Selected keypoint coordinates (N,2) and confidences (N,).
Raises:
ValueError: If an unknown method is specified.
"""
if num_visible == 0:
return kpts[:, :2], kpts[:, 2]
methods = ["confidence", "distance", "distance+confidence", "closest"]
sel_method = method or args.selection_method
if sel_method not in methods:
raise ValueError("Unknown method for keypoint selection: {}".format(sel_method))
# Select at maximum keypoint from the face
facial_kpts = kpts[:3, :]
facial_conf = kpts[:3, 2]
facial_point = facial_kpts[np.argmax(facial_conf)]
if facial_point[-1] >= args.visibility_thr:
kpts = np.concatenate([facial_point[None, :], kpts[3:]], axis=0)
conf = kpts[:, 2]
vis_mask = conf >= args.visibility_thr
coords = kpts[vis_mask, :2]
confs = conf[vis_mask]
if sel_method == "confidence":
order = np.argsort(confs)[::-1]
coords = coords[order]
confs = confs[order]
elif sel_method == "distance":
if bbox is None:
bbox_center = np.array([coords[:, 0].mean(), coords[:, 1].mean()])
else:
bbox_center = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2])
dists = np.linalg.norm(coords[:, :2] - bbox_center, axis=1)
dist_matrix = np.linalg.norm(coords[:, None, :2] - coords[None, :, :2], axis=2)
np.fill_diagonal(dist_matrix, np.inf)
min_inter_dist = np.min(dist_matrix, axis=1)
order = np.argsort(dists + 3 * min_inter_dist)[::-1]
coords = coords[order, :2]
confs = confs[order]
elif sel_method == "distance+confidence":
order = np.argsort(confs)[::-1]
confidences = kpts[order, 2]
coords = coords[order, :2]
confs = confs[order]
dist_matrix = np.linalg.norm(coords[:, None, :2] - coords[None, :, :2], axis=2)
selected_idx = [0]
confidences[0] = -1
for _ in range(coords.shape[0] - 1):
min_dist = np.min(dist_matrix[:, selected_idx], axis=1)
min_dist[confidences < np.percentile(confidences, 80)] = -1
next_idx = np.argmax(min_dist)
selected_idx.append(next_idx)
confidences[next_idx] = -1
coords = coords[selected_idx]
confs = confs[selected_idx]
elif sel_method == "closest":
coords = coords[confs > STRICT_KPT_THRESHOLD, :]
confs = confs[confs > STRICT_KPT_THRESHOLD]
if bbox is None:
bbox_center = np.array([coords[:, 0].mean(), coords[:, 1].mean()])
else:
bbox_center = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2])
dists = np.linalg.norm(coords[:, :2] - bbox_center, axis=1)
order = np.argsort(dists)
coords = coords[order, :2]
confs = confs[order]
return coords, confs
def prepare_model(model_cfg: Any, model_checkpoint: str) -> SAM2ImagePredictor:
"""
Build and return a SAM2ImagePredictor model on the appropriate device.
Args:
model_cfg: Configuration for SAM2 model.
model_checkpoint (str): Path to model checkpoint.
Returns:
SAM2ImagePredictor: Initialized SAM2 image predictor.
"""
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
sam2 = build_sam2(model_cfg, model_checkpoint, device=device, apply_postprocessing=True)
model = SAM2ImagePredictor(
sam2,
max_hole_area=10.0,
max_sprinkle_area=50.0,
)
return model
def _compute_mask_pose_consistency(masks: List[np.ndarray], keypoints_list: List[np.ndarray]) -> np.ndarray:
"""
Compute mask-pose consistency score for each mask-keypoints pair.
Args:
masks (List[np.ndarray]): Binary masks list.
keypoints_list (List[np.ndarray]): List of keypoint arrays per instance.
Returns:
np.ndarray: Consistency scores array of shape (N,).
"""
scores: List[float] = []
for mask, kpts in zip(masks, keypoints_list):
other_kpts = np.concatenate([keypoints_list[:idx], keypoints_list[idx + 1 :]], axis=0).reshape(-1, 3)
score = _compute_one_mask_pose_consistency(mask, kpts, other_kpts)
scores.append(score)
return np.array(scores)
def _pose2seg(
args: Any,
model: SAM2ImagePredictor,
bbox_xyxy: Optional[List[float]] = None,
pos_kpts: Optional[np.ndarray] = None,
neg_kpts: Optional[np.ndarray] = None,
image: Optional[np.ndarray] = None,
gt_mask: Optional[Any] = None,
num_pos_keypoints: Optional[int] = None,
gt_mask_is_binary: bool = False,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, float]:
"""
Run SAM segmentation conditioned on pose keypoints and optional ground truth mask.
Args:
args: Configuration object with prompting settings.
model (SAM2ImagePredictor): Prepared SAM2 model.
bbox_xyxy (Optional[List[float]]): Bounding box coordinates in xyxy format.
pos_kpts (Optional[np.ndarray]): Positive keypoints array.
neg_kpts (Optional[np.ndarray]): Negative keypoints array.
image (Optional[np.ndarray]): Input image array.
gt_mask (Optional[Any]): Ground truth mask (optional).
num_pos_keypoints (Optional[int]): Number of positive keypoints to use.
gt_mask_is_binary (bool): Flag indicating if ground truth mask is binary.
Returns:
Tuple of (mask, pos_kpts_backup, neg_kpts_backup, score).
"""
num_pos_keypoints = args.num_pos_keypoints if num_pos_keypoints is None else num_pos_keypoints
# Filter-out un-annotated and invisible keypoints
if pos_kpts is not None:
pos_kpts = pos_kpts.reshape(-1, 3)
valid_kpts = pos_kpts[:, 2] > args.visibility_thr
pose_bbox = np.array([pos_kpts[:, 0].min(), pos_kpts[:, 1].min(), pos_kpts[:, 0].max(), pos_kpts[:, 1].max()])
pos_kpts, conf = _select_keypoints(args, pos_kpts, num_visible=valid_kpts.sum(), bbox=bbox_xyxy)
pos_kpts_backup = np.concatenate([pos_kpts, conf[:, None]], axis=1)
if pos_kpts.shape[0] > num_pos_keypoints:
pos_kpts = pos_kpts[:num_pos_keypoints, :]
pos_kpts_backup = pos_kpts_backup[:num_pos_keypoints, :]
else:
pose_bbox = None
pos_kpts = np.empty((0, 2), dtype=np.float32)
pos_kpts_backup = np.empty((0, 3), dtype=np.float32)
if neg_kpts is not None:
neg_kpts = neg_kpts.reshape(-1, 3)
valid_kpts = neg_kpts[:, 2] > args.visibility_thr
neg_kpts, conf = _select_keypoints(
args, neg_kpts, num_visible=valid_kpts.sum(), bbox=bbox_xyxy, method="closest"
)
selected_neg_kpts = neg_kpts
neg_kpts_backup = np.concatenate([neg_kpts, conf[:, None]], axis=1)
if neg_kpts.shape[0] > args.num_neg_keypoints:
selected_neg_kpts = neg_kpts[: args.num_neg_keypoints, :]
else:
selected_neg_kpts = np.empty((0, 2), dtype=np.float32)
neg_kpts_backup = np.empty((0, 3), dtype=np.float32)
# Concatenate positive and negative keypoints
kpts = np.concatenate([pos_kpts, selected_neg_kpts], axis=0)
kpts_labels = np.concatenate([np.ones(pos_kpts.shape[0]), np.zeros(selected_neg_kpts.shape[0])], axis=0)
bbox = bbox_xyxy if args.use_bbox else None
if args.extend_bbox and not bbox is None:
# Expand the bbox such that it contains all positive keypoints
pose_bbox = np.array(
[pos_kpts[:, 0].min() - 2, pos_kpts[:, 1].min() - 2, pos_kpts[:, 0].max() + 2, pos_kpts[:, 1].max() + 2]
)
expanded_bbox = np.array(bbox)
expanded_bbox[:2] = np.minimum(bbox[:2], pose_bbox[:2])
expanded_bbox[2:] = np.maximum(bbox[2:], pose_bbox[2:])
bbox = expanded_bbox
if args.crop and args.use_bbox and image is not None:
# Crop the image to the 1.5 * bbox size
crop_bbox = np.array(bbox)
bbox_center = np.array([(crop_bbox[0] + crop_bbox[2]) / 2, (crop_bbox[1] + crop_bbox[3]) / 2])
bbox_size = np.array([crop_bbox[2] - crop_bbox[0], crop_bbox[3] - crop_bbox[1]])
bbox_size = 1.5 * bbox_size
crop_bbox = np.array(
[
bbox_center[0] - bbox_size[0] / 2,
bbox_center[1] - bbox_size[1] / 2,
bbox_center[0] + bbox_size[0] / 2,
bbox_center[1] + bbox_size[1] / 2,
]
)
crop_bbox = np.round(crop_bbox).astype(int)
crop_bbox = np.clip(crop_bbox, 0, [image.shape[1], image.shape[0], image.shape[1], image.shape[0]])
original_image_size = image.shape[:2]
image = image[crop_bbox[1] : crop_bbox[3], crop_bbox[0] : crop_bbox[2], :]
# Update the keypoints
kpts = kpts - crop_bbox[:2]
bbox[:2] = bbox[:2] - crop_bbox[:2]
bbox[2:] = bbox[2:] - crop_bbox[:2]
model.set_image(image)
masks, scores, logits = model.predict(
point_coords=kpts,
point_labels=kpts_labels,
box=bbox,
multimask_output=False,
)
mask = masks[0]
scores = scores[0]
if args.crop and args.use_bbox and image is not None:
# Pad the mask to the original image size
mask_padded = np.zeros(original_image_size, dtype=np.uint8)
mask_padded[crop_bbox[1] : crop_bbox[3], crop_bbox[0] : crop_bbox[2]] = mask
mask = mask_padded
bbox[:2] = bbox[:2] + crop_bbox[:2]
bbox[2:] = bbox[2:] + crop_bbox[:2]
if args.pose_mask_consistency:
if gt_mask_is_binary:
gt_mask_binary = gt_mask
else:
gt_mask_binary = Mask.decode(gt_mask).astype(bool) if gt_mask is not None else None
gt_mask_pose_consistency = _compute_one_mask_pose_consistency(gt_mask_binary, pos_kpts_backup, neg_kpts_backup)
dt_mask_pose_consistency = _compute_one_mask_pose_consistency(mask, pos_kpts_backup, neg_kpts_backup)
tol = 0.1
dt_is_same = np.abs(dt_mask_pose_consistency - gt_mask_pose_consistency) < tol
if dt_is_same:
mask = gt_mask_binary if gt_mask_binary.sum() < mask.sum() else mask
else:
mask = gt_mask_binary if gt_mask_pose_consistency > dt_mask_pose_consistency else mask
return mask, pos_kpts_backup, neg_kpts_backup, scores
def process_image_with_SAM(
sam_args: Any,
image: np.ndarray,
model: SAM2ImagePredictor,
new_dets: InstanceData,
old_dets: Optional[InstanceData] = None,
) -> InstanceData:
"""
Wrapper that validates args and routes to single or batch processing.
"""
_validate_sam_args(sam_args)
if sam_args.batch:
return _process_image_batch(sam_args, image, model, new_dets, old_dets)
return _process_image_single(sam_args, image, model, new_dets, old_dets)
def _process_image_single(
sam_args: Any,
image: np.ndarray,
model: SAM2ImagePredictor,
new_dets: InstanceData,
old_dets: Optional[InstanceData] = None,
) -> InstanceData:
"""
Refine instance segmentation masks using SAM2 with pose-conditioned prompts.
Args:
sam_args (Any): DotDict containing required SAM parameters:
crop (bool), use_bbox (bool), confidence_thr (float),
ignore_small_bboxes (bool), num_pos_keypoints (int),
num_pos_keypoints_if_crowd (int), crowd_by_max_iou (Optional[float]),
batch (bool), exclusive_masks (bool), extend_bbox (bool), pose_mask_consistency (bool).
image (np.ndarray): BGR image array of shape (H, W, 3).
model (SAM2ImagePredictor): Initialized SAM2 predictor.
new_dets (InstanceData): New detections with attributes:
bboxes, pred_masks, keypoints, bbox_scores.
old_dets (Optional[InstanceData]): Previous detections for negative prompts.
Returns:
InstanceData: `new_dets` updated in-place with
`.refined_masks`, `.sam_scores`, and `.sam_kpts`.
"""
_validate_sam_args(sam_args)
if not (sam_args.crop and sam_args.use_bbox):
model.set_image(image)
# Ignore all keypoints with confidence below the threshold
new_keypoints = new_dets.keypoints.copy()
for kpts in new_keypoints:
conf_mask = kpts[:, 2] < sam_args.confidence_thr
kpts[conf_mask, :] = 0
n_new_dets = len(new_dets.bboxes)
n_old_dets = 0
if old_dets is not None:
n_old_dets = len(old_dets.bboxes)
old_keypoints = old_dets.keypoints.copy()
for kpts in old_keypoints:
conf_mask = kpts[:, 2] < sam_args.confidence_thr
kpts[conf_mask, :] = 0
all_bboxes = new_dets.bboxes.copy()
if old_dets is not None:
all_bboxes = np.concatenate([all_bboxes, old_dets.bboxes], axis=0)
max_ious = _get_max_ious(all_bboxes)
gt_bboxes = []
new_dets.refined_masks = np.zeros((n_new_dets, image.shape[0], image.shape[1]), dtype=np.uint8)
new_dets.sam_scores = np.zeros_like(new_dets.bbox_scores)
new_dets.sam_kpts = np.zeros((len(new_dets.bboxes), sam_args.num_pos_keypoints, 3), dtype=np.float32)
for instance_idx in range(len(new_dets.bboxes)):
bbox_xywh = new_dets.bboxes[instance_idx]
bbox_area = bbox_xywh[2] * bbox_xywh[3]
if sam_args.ignore_small_bboxes and bbox_area < 100 * 100:
continue
dt_mask = new_dets.pred_masks[instance_idx] if new_dets.pred_masks is not None else None
bbox_xyxy = [bbox_xywh[0], bbox_xywh[1], bbox_xywh[0] + bbox_xywh[2], bbox_xywh[1] + bbox_xywh[3]]
gt_bboxes.append(bbox_xyxy)
this_kpts = new_keypoints[instance_idx].reshape(1, -1, 3)
other_kpts = None
if old_dets is not None:
other_kpts = old_keypoints.copy().reshape(n_old_dets, -1, 3)
if len(new_keypoints) > 1:
other_new_kpts = np.concatenate([new_keypoints[:instance_idx], new_keypoints[instance_idx + 1 :]], axis=0)
other_kpts = (
np.concatenate([other_kpts, other_new_kpts], axis=0) if other_kpts is not None else other_new_kpts
)
num_pos_keypoints = sam_args.num_pos_keypoints
if sam_args.crowd_by_max_iou is not None and max_ious[instance_idx] > sam_args.crowd_by_max_iou:
bbox_xyxy = None
num_pos_keypoints = sam_args.num_pos_keypoints_if_crowd
dt_mask, pos_kpts, neg_kpts, scores = _pose2seg(
sam_args,
model,
bbox_xyxy,
pos_kpts=this_kpts,
neg_kpts=other_kpts,
image=image if (sam_args.crop and sam_args.use_bbox) else None,
gt_mask=dt_mask,
num_pos_keypoints=num_pos_keypoints,
gt_mask_is_binary=True,
)
new_dets.refined_masks[instance_idx] = dt_mask
new_dets.sam_scores[instance_idx] = scores
# If the number of positive keypoints is less than the required number, fill the rest with zeros
if len(pos_kpts) != sam_args.num_pos_keypoints:
pos_kpts = np.concatenate(
[pos_kpts, np.zeros((sam_args.num_pos_keypoints - len(pos_kpts), 3), dtype=np.float32)], axis=0
)
new_dets.sam_kpts[instance_idx] = pos_kpts
n_masks = len(new_dets.refined_masks) + (len(old_dets.refined_masks) if old_dets is not None else 0)
if sam_args.exclusive_masks and n_masks > 1:
all_masks = (
np.concatenate([new_dets.refined_masks, old_dets.refined_masks], axis=0)
if old_dets is not None
else new_dets.refined_masks
)
all_scores = (
np.concatenate([new_dets.sam_scores, old_dets.sam_scores], axis=0)
if old_dets is not None
else new_dets.sam_scores
)
refined_masks = _apply_exclusive_masks(all_masks, all_scores)
new_dets.refined_masks = refined_masks[: len(new_dets.refined_masks)]
return new_dets
def _process_image_batch(
sam_args: Any,
image: np.ndarray,
model: SAM2ImagePredictor,
new_dets: InstanceData,
old_dets: Optional[InstanceData] = None,
) -> InstanceData:
"""
Batch process multiple detection instances with SAM2 refinement.
Args:
sam_args (Any): DotDict of SAM parameters (same as `process_image_with_SAM`).
image (np.ndarray): Input BGR image.
model (SAM2ImagePredictor): Prepared SAM2 predictor.
new_dets (InstanceData): New detection instances.
old_dets (Optional[InstanceData]): Previous detections for negative prompts.
Returns:
InstanceData: `new_dets` updated as in `process_image_with_SAM`.
"""
n_new_dets = len(new_dets.bboxes)
model.set_image(image)
image_kpts = []
image_bboxes = []
num_valid_kpts = []
for instance_idx in range(len(new_dets.bboxes)):
bbox_xywh = new_dets.bboxes[instance_idx].copy()
bbox_area = bbox_xywh[2] * bbox_xywh[3]
if sam_args.ignore_small_bboxes and bbox_area < 100 * 100:
continue
this_kpts = new_dets.keypoints[instance_idx].copy().reshape(-1, 3)
kpts_vis = np.array(this_kpts[:, 2])
visible_kpts = (kpts_vis > sam_args.visibility_thr) & (this_kpts[:, 2] > sam_args.confidence_thr)
num_visible = (visible_kpts).sum()
if num_visible <= 0:
continue
num_valid_kpts.append(num_visible)
image_bboxes.append(np.array(bbox_xywh))
this_kpts[~visible_kpts, :2] = 0
this_kpts[:, 2] = visible_kpts
image_kpts.append(this_kpts)
if old_dets is not None:
for instance_idx in range(len(old_dets.bboxes)):
bbox_xywh = old_dets.bboxes[instance_idx].copy()
bbox_area = bbox_xywh[2] * bbox_xywh[3]
if sam_args.ignore_small_bboxes and bbox_area < 100 * 100:
continue
this_kpts = old_dets.keypoints[instance_idx].reshape(-1, 3)
kpts_vis = np.array(this_kpts[:, 2])
visible_kpts = (kpts_vis > sam_args.visibility_thr) & (this_kpts[:, 2] > sam_args.confidence_thr)
num_visible = (visible_kpts).sum()
if num_visible <= 0:
continue
num_valid_kpts.append(num_visible)
image_bboxes.append(np.array(bbox_xywh))
this_kpts[~visible_kpts, :2] = 0
this_kpts[:, 2] = visible_kpts
image_kpts.append(this_kpts)
image_kpts = np.array(image_kpts)
image_bboxes = np.array(image_bboxes)
num_valid_kpts = np.array(num_valid_kpts)
image_kpts_backup = image_kpts.copy()
# Prepare keypoints such that all instances have the same number of keypoints
# First sort keypoints by their distance to the center of the bounding box
# If some are missing, duplicate the last one
prepared_kpts = []
prepared_kpts_backup = []
for bbox, kpts, num_visible in zip(image_bboxes, image_kpts, num_valid_kpts):
this_kpts, this_conf = _select_keypoints(sam_args, kpts, num_visible, bbox)
# Duplicate the last keypoint if some are missing
if this_kpts.shape[0] < num_valid_kpts.max():
this_kpts = np.concatenate(
[this_kpts, np.tile(this_kpts[-1], (num_valid_kpts.max() - this_kpts.shape[0], 1))], axis=0
)
this_conf = np.concatenate(
[this_conf, np.tile(this_conf[-1], (num_valid_kpts.max() - this_conf.shape[0],))], axis=0
)
prepared_kpts.append(this_kpts)
prepared_kpts_backup.append(np.concatenate([this_kpts, this_conf[:, None]], axis=1))
image_kpts = np.array(prepared_kpts)
image_kpts_backup = np.array(prepared_kpts_backup)
kpts_labels = np.ones(image_kpts.shape[:2])
# Compute IoUs between all bounding boxes
max_ious = _get_max_ious(image_bboxes)
num_pos_keypoints = sam_args.num_pos_keypoints
use_bbox = sam_args.use_bbox
if sam_args.crowd_by_max_iou is not None and max_ious[instance_idx] > sam_args.crowd_by_max_iou:
use_bbox = False
num_pos_keypoints = sam_args.num_pos_keypoints_if_crowd
# Threshold the number of positive keypoints
if num_pos_keypoints > 0 and num_pos_keypoints < image_kpts.shape[1]:
image_kpts = image_kpts[:, :num_pos_keypoints, :]
kpts_labels = kpts_labels[:, :num_pos_keypoints]
image_kpts_backup = image_kpts_backup[:, :num_pos_keypoints, :]
elif num_pos_keypoints == 0:
image_kpts = None
kpts_labels = None
image_kpts_backup = np.empty((0, 3), dtype=np.float32)
image_bboxes_xyxy = None
if use_bbox:
image_bboxes_xyxy = np.array(image_bboxes)
image_bboxes_xyxy[:, 2:] += image_bboxes_xyxy[:, :2]
# Expand the bbox to include the positive keypoints
if sam_args.extend_bbox:
pose_bbox = np.stack(
[
np.min(image_kpts[:, :, 0], axis=1) - 2,
np.min(image_kpts[:, :, 1], axis=1) - 2,
np.max(image_kpts[:, :, 0], axis=1) + 2,
np.max(image_kpts[:, :, 1], axis=1) + 2,
],
axis=1,
)
expanded_bbox = np.array(image_bboxes_xyxy)
expanded_bbox[:, :2] = np.minimum(expanded_bbox[:, :2], pose_bbox[:, :2])
expanded_bbox[:, 2:] = np.maximum(expanded_bbox[:, 2:], pose_bbox[:, 2:])
# bbox_expanded = (np.abs(expanded_bbox - image_bboxes_xyxy) > 1e-4).any(axis=1)
image_bboxes_xyxy = expanded_bbox
# Process even old detections to get their 'negative' keypoints
masks, scores, logits = model.predict(
point_coords=image_kpts,
point_labels=kpts_labels,
box=image_bboxes_xyxy,
multimask_output=False,
)
# Reshape the masks to (N, C, H, W). If the model outputs (C, H, W), add a number of masks dimension
if len(masks.shape) == 3:
masks = masks[None, :, :, :]
masks = masks[:, 0, :, :]
N = masks.shape[0]
scores = scores.reshape(N)
if sam_args.exclusive_masks and N > 1:
# Make sure the masks are non-overlapping
# If two masks overlap, set the pixel to the one with the highest score
masks = _apply_exclusive_masks(masks, scores)
gt_masks = new_dets.pred_masks.copy() if new_dets.pred_masks is not None else None
if sam_args.pose_mask_consistency and gt_masks is not None:
# Measure 'mask-pose_conistency' by computing number of keypoints inside the mask
# Compute for both gt (if available) and predicted masks and then choose the one with higher consistency
dt_mask_pose_consistency = _compute_mask_pose_consistency(masks, image_kpts_backup)
gt_mask_pose_consistency = _compute_mask_pose_consistency(gt_masks, image_kpts_backup)
dt_masks_area = np.array([m.sum() for m in masks])
gt_masks_area = np.array([m.sum() for m in gt_masks]) if gt_masks is not None else np.zeros_like(dt_masks_area)
# If PM-c is approx the same, prefer the smaller mask
tol = 0.1
pmc_is_equal = np.isclose(dt_mask_pose_consistency, gt_mask_pose_consistency, atol=tol)
dt_is_worse = (dt_mask_pose_consistency < (gt_mask_pose_consistency - tol)) | pmc_is_equal & (
dt_masks_area > gt_masks_area
)
new_masks = []
for dt_mask, gt_mask, dt_worse in zip(masks, gt_masks, dt_is_worse):
if dt_worse:
new_masks.append(gt_mask)
else:
new_masks.append(dt_mask)
masks = np.array(new_masks)
new_dets.refined_masks = masks[:n_new_dets]
new_dets.sam_scores = scores[:n_new_dets]
new_dets.sam_kpts = image_kpts_backup[:n_new_dets]
return new_dets
def _apply_exclusive_masks(masks: np.ndarray, scores: np.ndarray) -> np.ndarray:
"""
Ensure masks are non-overlapping by keeping at each pixel the mask with the highest score.
"""
no_mask = masks.sum(axis=0) == 0
masked_scores = masks * scores[:, None, None]
argmax_masks = np.argmax(masked_scores, axis=0)
new_masks = argmax_masks[None, :, :] == (np.arange(masks.shape[0])[:, None, None])
new_masks[:, no_mask] = 0
return new_masks
|