File size: 19,357 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# Copyright (c) OpenMMLab. All rights reserved.
import os
from collections import defaultdict
from functools import partial
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union

import mmcv
import numpy as np
import torch
from mmengine.config import Config, ConfigDict
from mmengine.infer.infer import ModelType
from mmengine.model import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmengine.structures import InstanceData

from mmpose.apis import (_track_by_iou, _track_by_oks, collate_pose_sequence,
                         convert_keypoint_definition, extract_pose_sequence)
from mmpose.registry import INFERENCERS
from mmpose.structures import PoseDataSample, merge_data_samples
from .base_mmpose_inferencer import BaseMMPoseInferencer
from .pose2d_inferencer import Pose2DInferencer

InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = Union[InstanceData, InstanceList]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ConfigType = Union[Config, ConfigDict]
ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]]


@INFERENCERS.register_module(name='pose-estimation-3d')
@INFERENCERS.register_module()
class Pose3DInferencer(BaseMMPoseInferencer):
    """The inferencer for 3D pose estimation.

    Args:
        model (str, optional): Pretrained 2D pose estimation algorithm.
            It's the path to the config file or the model name defined in
            metafile. For example, it could be:

            - model alias, e.g. ``'body'``,
            - config name, e.g. ``'simcc_res50_8xb64-210e_coco-256x192'``,
            - config path

            Defaults to ``None``.
        weights (str, optional): Path to the checkpoint. If it is not
            specified and "model" is a model name of metafile, the weights
            will be loaded from metafile. Defaults to None.
        device (str, optional): Device to run inference. If None, the
            available device will be automatically used. Defaults to None.
        scope (str, optional): The scope of the model. Defaults to "mmpose".
        det_model (str, optional): Config path or alias of detection model.
            Defaults to None.
        det_weights (str, optional): Path to the checkpoints of detection
            model. Defaults to None.
        det_cat_ids (int or list[int], optional): Category id for
            detection model. Defaults to None.
        output_heatmaps (bool, optional): Flag to visualize predicted
            heatmaps. If set to None, the default setting from the model
            config will be used. Default is None.
    """

    preprocess_kwargs: set = {
        'bbox_thr', 'nms_thr', 'bboxes', 'use_oks_tracking', 'tracking_thr',
        'disable_norm_pose_2d'
    }
    forward_kwargs: set = {'disable_rebase_keypoint'}
    visualize_kwargs: set = {
        'return_vis',
        'show',
        'wait_time',
        'draw_bbox',
        'radius',
        'thickness',
        'num_instances',
        'kpt_thr',
        'vis_out_dir',
    }
    postprocess_kwargs: set = {'pred_out_dir', 'return_datasample'}

    def __init__(self,
                 model: Union[ModelType, str],
                 weights: Optional[str] = None,
                 pose2d_model: Optional[Union[ModelType, str]] = None,
                 pose2d_weights: Optional[str] = None,
                 device: Optional[str] = None,
                 scope: Optional[str] = 'mmpose',
                 det_model: Optional[Union[ModelType, str]] = None,
                 det_weights: Optional[str] = None,
                 det_cat_ids: Optional[Union[int, Tuple]] = None,
                 show_progress: bool = False) -> None:

        init_default_scope(scope)
        super().__init__(
            model=model,
            weights=weights,
            device=device,
            scope=scope,
            show_progress=show_progress)
        self.model = revert_sync_batchnorm(self.model)

        # assign dataset metainfo to self.visualizer
        self.visualizer.set_dataset_meta(self.model.dataset_meta)

        # initialize 2d pose estimator
        self.pose2d_model = Pose2DInferencer(
            pose2d_model if pose2d_model else 'human', pose2d_weights, device,
            scope, det_model, det_weights, det_cat_ids)

        # helper functions
        self._keypoint_converter = partial(
            convert_keypoint_definition,
            pose_det_dataset=self.pose2d_model.model.
            dataset_meta['dataset_name'],
            pose_lift_dataset=self.model.dataset_meta['dataset_name'],
        )

        self._pose_seq_extractor = partial(
            extract_pose_sequence,
            causal=self.cfg.test_dataloader.dataset.get('causal', False),
            seq_len=self.cfg.test_dataloader.dataset.get('seq_len', 1),
            step=self.cfg.test_dataloader.dataset.get('seq_step', 1))

        self._video_input = False
        self._buffer = defaultdict(list)

    def preprocess_single(self,
                          input: InputType,
                          index: int,
                          bbox_thr: float = 0.3,
                          nms_thr: float = 0.3,
                          bboxes: Union[List[List], List[np.ndarray],
                                        np.ndarray] = [],
                          use_oks_tracking: bool = False,
                          tracking_thr: float = 0.3,
                          disable_norm_pose_2d: bool = False):
        """Process a single input into a model-feedable format.

        Args:
            input (InputType): The input provided by the user.
            index (int): The index of the input.
            bbox_thr (float, optional): The threshold for bounding box
                detection. Defaults to 0.3.
            nms_thr (float, optional): The Intersection over Union (IoU)
                threshold for bounding box Non-Maximum Suppression (NMS).
                Defaults to 0.3.
            bboxes (Union[List[List], List[np.ndarray], np.ndarray]):
                The bounding boxes to use. Defaults to [].
            use_oks_tracking (bool, optional): A flag that indicates
                whether OKS-based tracking should be used. Defaults to False.
            tracking_thr (float, optional): The threshold for tracking.
                Defaults to 0.3.
            disable_norm_pose_2d (bool, optional): A flag that indicates
                whether 2D pose normalization should be used.
                Defaults to False.

        Yields:
            Any: The data processed by the pipeline and collate_fn.

        This method first calculates 2D keypoints using the provided
        pose2d_model. The method also performs instance matching, which
        can use either OKS-based tracking or IOU-based tracking.
        """

        # calculate 2d keypoints
        results_pose2d = next(
            self.pose2d_model(
                input,
                bbox_thr=bbox_thr,
                nms_thr=nms_thr,
                bboxes=bboxes,
                merge_results=False,
                return_datasamples=True))['predictions']

        for ds in results_pose2d:
            ds.pred_instances.set_field(
                (ds.pred_instances.bboxes[..., 2:] -
                 ds.pred_instances.bboxes[..., :2]).prod(-1), 'areas')

        if not self._video_input:
            height, width = results_pose2d[0].metainfo['ori_shape']

            # Clear the buffer if inputs are individual images to prevent
            # carryover effects from previous images
            self._buffer.clear()

        else:
            height = self.video_info['height']
            width = self.video_info['width']
        img_path = results_pose2d[0].metainfo['img_path']

        # instance matching
        if use_oks_tracking:
            _track = partial(_track_by_oks)
        else:
            _track = _track_by_iou

        for result in results_pose2d:
            track_id, self._buffer['results_pose2d_last'], _ = _track(
                result, self._buffer['results_pose2d_last'], tracking_thr)
            if track_id == -1:
                pred_instances = result.pred_instances.cpu().numpy()
                keypoints = pred_instances.keypoints
                if np.count_nonzero(keypoints[:, :, 1]) >= 3:
                    next_id = self._buffer.get('next_id', 0)
                    result.set_field(next_id, 'track_id')
                    self._buffer['next_id'] = next_id + 1
                else:
                    # If the number of keypoints detected is small,
                    # delete that person instance.
                    result.pred_instances.keypoints[..., 1] = -10
                    result.pred_instances.bboxes *= 0
                    result.set_field(-1, 'track_id')
            else:
                result.set_field(track_id, 'track_id')
        self._buffer['pose2d_results'] = merge_data_samples(results_pose2d)

        # convert keypoints
        results_pose2d_converted = [ds.cpu().numpy() for ds in results_pose2d]
        for ds in results_pose2d_converted:
            ds.pred_instances.keypoints = self._keypoint_converter(
                ds.pred_instances.keypoints)
        self._buffer['pose_est_results_list'].append(results_pose2d_converted)

        # extract and pad input pose2d sequence
        pose_results_2d = self._pose_seq_extractor(
            self._buffer['pose_est_results_list'],
            frame_idx=index if self._video_input else 0)
        causal = self.cfg.test_dataloader.dataset.get('causal', False)
        target_idx = -1 if causal else len(pose_results_2d) // 2

        stats_info = self.model.dataset_meta.get('stats_info', {})
        bbox_center = stats_info.get('bbox_center', None)
        bbox_scale = stats_info.get('bbox_scale', None)

        pose_results_2d_copy = []
        for pose_res in pose_results_2d:
            pose_res_copy = []
            for data_sample in pose_res:

                data_sample_copy = PoseDataSample()
                data_sample_copy.gt_instances = \
                    data_sample.gt_instances.clone()
                data_sample_copy.pred_instances = \
                    data_sample.pred_instances.clone()
                data_sample_copy.track_id = data_sample.track_id

                kpts = data_sample.pred_instances.keypoints
                bboxes = data_sample.pred_instances.bboxes
                keypoints = []
                for k in range(len(kpts)):
                    kpt = kpts[k]
                    if not disable_norm_pose_2d:
                        bbox = bboxes[k]
                        center = np.array([[(bbox[0] + bbox[2]) / 2,
                                            (bbox[1] + bbox[3]) / 2]])
                        scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
                        keypoints.append((kpt[:, :2] - center) / scale *
                                         bbox_scale + bbox_center)
                    else:
                        keypoints.append(kpt[:, :2])
                data_sample_copy.pred_instances.set_field(
                    np.array(keypoints), 'keypoints')
                pose_res_copy.append(data_sample_copy)

            pose_results_2d_copy.append(pose_res_copy)
        pose_sequences_2d = collate_pose_sequence(pose_results_2d_copy, True,
                                                  target_idx)
        if not pose_sequences_2d:
            return []

        data_list = []
        for i, pose_seq in enumerate(pose_sequences_2d):
            data_info = dict()

            keypoints_2d = pose_seq.pred_instances.keypoints
            keypoints_2d = np.squeeze(
                keypoints_2d,
                axis=0) if keypoints_2d.ndim == 4 else keypoints_2d

            T, K, C = keypoints_2d.shape

            data_info['keypoints'] = keypoints_2d
            data_info['keypoints_visible'] = np.ones((
                T,
                K,
            ),
                                                     dtype=np.float32)
            data_info['lifting_target'] = np.zeros((1, K, 3), dtype=np.float32)
            data_info['factor'] = np.zeros((T, ), dtype=np.float32)
            data_info['lifting_target_visible'] = np.ones((1, K, 1),
                                                          dtype=np.float32)
            data_info['camera_param'] = dict(w=width, h=height)

            data_info.update(self.model.dataset_meta)
            data_info = self.pipeline(data_info)
            data_info['data_samples'].set_field(
                img_path, 'img_path', field_type='metainfo')
            data_list.append(data_info)

        return data_list

    @torch.no_grad()
    def forward(self,
                inputs: Union[dict, tuple],
                disable_rebase_keypoint: bool = False):
        """Perform forward pass through the model and process the results.

        Args:
            inputs (Union[dict, tuple]): The inputs for the model.
            disable_rebase_keypoint (bool, optional): Flag to disable rebasing
                the height of the keypoints. Defaults to False.

        Returns:
            list: A list of data samples, each containing the model's output
                results.
        """
        pose_lift_results = self.model.test_step(inputs)

        # Post-processing of pose estimation results
        pose_est_results_converted = self._buffer['pose_est_results_list'][-1]
        for idx, pose_lift_res in enumerate(pose_lift_results):
            # Update track_id from the pose estimation results
            pose_lift_res.track_id = pose_est_results_converted[idx].get(
                'track_id', 1e4)

            # align the shape of output keypoints coordinates and scores
            keypoints = pose_lift_res.pred_instances.keypoints
            keypoint_scores = pose_lift_res.pred_instances.keypoint_scores
            if keypoint_scores.ndim == 3:
                pose_lift_results[idx].pred_instances.keypoint_scores = \
                    np.squeeze(keypoint_scores, axis=1)
            if keypoints.ndim == 4:
                keypoints = np.squeeze(keypoints, axis=1)

            # Invert x and z values of the keypoints
            keypoints = keypoints[..., [0, 2, 1]]
            keypoints[..., 0] = -keypoints[..., 0]
            keypoints[..., 2] = -keypoints[..., 2]

            # If rebase_keypoint_height is True, adjust z-axis values
            if not disable_rebase_keypoint:
                keypoints[..., 2] -= np.min(
                    keypoints[..., 2], axis=-1, keepdims=True)

            pose_lift_results[idx].pred_instances.keypoints = keypoints

        pose_lift_results = sorted(
            pose_lift_results, key=lambda x: x.get('track_id', 1e4))

        data_samples = [merge_data_samples(pose_lift_results)]
        return data_samples

    def visualize(self,
                  inputs: list,
                  preds: List[PoseDataSample],
                  return_vis: bool = False,
                  show: bool = False,
                  draw_bbox: bool = False,
                  wait_time: float = 0,
                  radius: int = 3,
                  thickness: int = 1,
                  kpt_thr: float = 0.3,
                  num_instances: int = 1,
                  vis_out_dir: str = '',
                  window_name: str = '',
                  window_close_event_handler: Optional[Callable] = None
                  ) -> List[np.ndarray]:
        """Visualize predictions.

        Args:
            inputs (list): Inputs preprocessed by :meth:`_inputs_to_list`.
            preds (Any): Predictions of the model.
            return_vis (bool): Whether to return images with predicted results.
            show (bool): Whether to display the image in a popup window.
                Defaults to False.
            wait_time (float): The interval of show (ms). Defaults to 0
            draw_bbox (bool): Whether to draw the bounding boxes.
                Defaults to False
            radius (int): Keypoint radius for visualization. Defaults to 3
            thickness (int): Link thickness for visualization. Defaults to 1
            kpt_thr (float): The threshold to visualize the keypoints.
                Defaults to 0.3
            vis_out_dir (str, optional): Directory to save visualization
                results w/o predictions. If left as empty, no file will
                be saved. Defaults to ''.
            window_name (str, optional): Title of display window.
            window_close_event_handler (callable, optional):

        Returns:
            List[np.ndarray]: Visualization results.
        """
        if (not return_vis) and (not show) and (not vis_out_dir):
            return

        if getattr(self, 'visualizer', None) is None:
            raise ValueError('Visualization needs the "visualizer" term'
                             'defined in the config, but got None.')

        self.visualizer.radius = radius
        self.visualizer.line_width = thickness
        det_kpt_color = self.pose2d_model.visualizer.kpt_color
        det_dataset_skeleton = self.pose2d_model.visualizer.skeleton
        det_dataset_link_color = self.pose2d_model.visualizer.link_color
        self.visualizer.det_kpt_color = det_kpt_color
        self.visualizer.det_dataset_skeleton = det_dataset_skeleton
        self.visualizer.det_dataset_link_color = det_dataset_link_color

        results = []

        for single_input, pred in zip(inputs, preds):
            if isinstance(single_input, str):
                img = mmcv.imread(single_input, channel_order='rgb')
            elif isinstance(single_input, np.ndarray):
                img = mmcv.bgr2rgb(single_input)
            else:
                raise ValueError('Unsupported input type: '
                                 f'{type(single_input)}')

            # since visualization and inference utilize the same process,
            # the wait time is reduced when a video input is utilized,
            # thereby eliminating the issue of inference getting stuck.
            wait_time = 1e-5 if self._video_input else wait_time

            if num_instances < 0:
                num_instances = len(pred.pred_instances)

            visualization = self.visualizer.add_datasample(
                window_name,
                img,
                data_sample=pred,
                det_data_sample=self._buffer['pose2d_results'],
                draw_gt=False,
                draw_bbox=draw_bbox,
                show=show,
                wait_time=wait_time,
                dataset_2d=self.pose2d_model.model.
                dataset_meta['dataset_name'],
                dataset_3d=self.model.dataset_meta['dataset_name'],
                kpt_thr=kpt_thr,
                num_instances=num_instances)
            results.append(visualization)

            if vis_out_dir:
                img_name = os.path.basename(pred.metainfo['img_path']) \
                    if 'img_path' in pred.metainfo else None
                self.save_visualization(
                    visualization,
                    vis_out_dir,
                    img_name=img_name,
                )

        if return_vis:
            return results
        else:
            return []