Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,357 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
from collections import defaultdict
from functools import partial
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
import mmcv
import numpy as np
import torch
from mmengine.config import Config, ConfigDict
from mmengine.infer.infer import ModelType
from mmengine.model import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmengine.structures import InstanceData
from mmpose.apis import (_track_by_iou, _track_by_oks, collate_pose_sequence,
convert_keypoint_definition, extract_pose_sequence)
from mmpose.registry import INFERENCERS
from mmpose.structures import PoseDataSample, merge_data_samples
from .base_mmpose_inferencer import BaseMMPoseInferencer
from .pose2d_inferencer import Pose2DInferencer
InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = Union[InstanceData, InstanceList]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ConfigType = Union[Config, ConfigDict]
ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]]
@INFERENCERS.register_module(name='pose-estimation-3d')
@INFERENCERS.register_module()
class Pose3DInferencer(BaseMMPoseInferencer):
"""The inferencer for 3D pose estimation.
Args:
model (str, optional): Pretrained 2D pose estimation algorithm.
It's the path to the config file or the model name defined in
metafile. For example, it could be:
- model alias, e.g. ``'body'``,
- config name, e.g. ``'simcc_res50_8xb64-210e_coco-256x192'``,
- config path
Defaults to ``None``.
weights (str, optional): Path to the checkpoint. If it is not
specified and "model" is a model name of metafile, the weights
will be loaded from metafile. Defaults to None.
device (str, optional): Device to run inference. If None, the
available device will be automatically used. Defaults to None.
scope (str, optional): The scope of the model. Defaults to "mmpose".
det_model (str, optional): Config path or alias of detection model.
Defaults to None.
det_weights (str, optional): Path to the checkpoints of detection
model. Defaults to None.
det_cat_ids (int or list[int], optional): Category id for
detection model. Defaults to None.
output_heatmaps (bool, optional): Flag to visualize predicted
heatmaps. If set to None, the default setting from the model
config will be used. Default is None.
"""
preprocess_kwargs: set = {
'bbox_thr', 'nms_thr', 'bboxes', 'use_oks_tracking', 'tracking_thr',
'disable_norm_pose_2d'
}
forward_kwargs: set = {'disable_rebase_keypoint'}
visualize_kwargs: set = {
'return_vis',
'show',
'wait_time',
'draw_bbox',
'radius',
'thickness',
'num_instances',
'kpt_thr',
'vis_out_dir',
}
postprocess_kwargs: set = {'pred_out_dir', 'return_datasample'}
def __init__(self,
model: Union[ModelType, str],
weights: Optional[str] = None,
pose2d_model: Optional[Union[ModelType, str]] = None,
pose2d_weights: Optional[str] = None,
device: Optional[str] = None,
scope: Optional[str] = 'mmpose',
det_model: Optional[Union[ModelType, str]] = None,
det_weights: Optional[str] = None,
det_cat_ids: Optional[Union[int, Tuple]] = None,
show_progress: bool = False) -> None:
init_default_scope(scope)
super().__init__(
model=model,
weights=weights,
device=device,
scope=scope,
show_progress=show_progress)
self.model = revert_sync_batchnorm(self.model)
# assign dataset metainfo to self.visualizer
self.visualizer.set_dataset_meta(self.model.dataset_meta)
# initialize 2d pose estimator
self.pose2d_model = Pose2DInferencer(
pose2d_model if pose2d_model else 'human', pose2d_weights, device,
scope, det_model, det_weights, det_cat_ids)
# helper functions
self._keypoint_converter = partial(
convert_keypoint_definition,
pose_det_dataset=self.pose2d_model.model.
dataset_meta['dataset_name'],
pose_lift_dataset=self.model.dataset_meta['dataset_name'],
)
self._pose_seq_extractor = partial(
extract_pose_sequence,
causal=self.cfg.test_dataloader.dataset.get('causal', False),
seq_len=self.cfg.test_dataloader.dataset.get('seq_len', 1),
step=self.cfg.test_dataloader.dataset.get('seq_step', 1))
self._video_input = False
self._buffer = defaultdict(list)
def preprocess_single(self,
input: InputType,
index: int,
bbox_thr: float = 0.3,
nms_thr: float = 0.3,
bboxes: Union[List[List], List[np.ndarray],
np.ndarray] = [],
use_oks_tracking: bool = False,
tracking_thr: float = 0.3,
disable_norm_pose_2d: bool = False):
"""Process a single input into a model-feedable format.
Args:
input (InputType): The input provided by the user.
index (int): The index of the input.
bbox_thr (float, optional): The threshold for bounding box
detection. Defaults to 0.3.
nms_thr (float, optional): The Intersection over Union (IoU)
threshold for bounding box Non-Maximum Suppression (NMS).
Defaults to 0.3.
bboxes (Union[List[List], List[np.ndarray], np.ndarray]):
The bounding boxes to use. Defaults to [].
use_oks_tracking (bool, optional): A flag that indicates
whether OKS-based tracking should be used. Defaults to False.
tracking_thr (float, optional): The threshold for tracking.
Defaults to 0.3.
disable_norm_pose_2d (bool, optional): A flag that indicates
whether 2D pose normalization should be used.
Defaults to False.
Yields:
Any: The data processed by the pipeline and collate_fn.
This method first calculates 2D keypoints using the provided
pose2d_model. The method also performs instance matching, which
can use either OKS-based tracking or IOU-based tracking.
"""
# calculate 2d keypoints
results_pose2d = next(
self.pose2d_model(
input,
bbox_thr=bbox_thr,
nms_thr=nms_thr,
bboxes=bboxes,
merge_results=False,
return_datasamples=True))['predictions']
for ds in results_pose2d:
ds.pred_instances.set_field(
(ds.pred_instances.bboxes[..., 2:] -
ds.pred_instances.bboxes[..., :2]).prod(-1), 'areas')
if not self._video_input:
height, width = results_pose2d[0].metainfo['ori_shape']
# Clear the buffer if inputs are individual images to prevent
# carryover effects from previous images
self._buffer.clear()
else:
height = self.video_info['height']
width = self.video_info['width']
img_path = results_pose2d[0].metainfo['img_path']
# instance matching
if use_oks_tracking:
_track = partial(_track_by_oks)
else:
_track = _track_by_iou
for result in results_pose2d:
track_id, self._buffer['results_pose2d_last'], _ = _track(
result, self._buffer['results_pose2d_last'], tracking_thr)
if track_id == -1:
pred_instances = result.pred_instances.cpu().numpy()
keypoints = pred_instances.keypoints
if np.count_nonzero(keypoints[:, :, 1]) >= 3:
next_id = self._buffer.get('next_id', 0)
result.set_field(next_id, 'track_id')
self._buffer['next_id'] = next_id + 1
else:
# If the number of keypoints detected is small,
# delete that person instance.
result.pred_instances.keypoints[..., 1] = -10
result.pred_instances.bboxes *= 0
result.set_field(-1, 'track_id')
else:
result.set_field(track_id, 'track_id')
self._buffer['pose2d_results'] = merge_data_samples(results_pose2d)
# convert keypoints
results_pose2d_converted = [ds.cpu().numpy() for ds in results_pose2d]
for ds in results_pose2d_converted:
ds.pred_instances.keypoints = self._keypoint_converter(
ds.pred_instances.keypoints)
self._buffer['pose_est_results_list'].append(results_pose2d_converted)
# extract and pad input pose2d sequence
pose_results_2d = self._pose_seq_extractor(
self._buffer['pose_est_results_list'],
frame_idx=index if self._video_input else 0)
causal = self.cfg.test_dataloader.dataset.get('causal', False)
target_idx = -1 if causal else len(pose_results_2d) // 2
stats_info = self.model.dataset_meta.get('stats_info', {})
bbox_center = stats_info.get('bbox_center', None)
bbox_scale = stats_info.get('bbox_scale', None)
pose_results_2d_copy = []
for pose_res in pose_results_2d:
pose_res_copy = []
for data_sample in pose_res:
data_sample_copy = PoseDataSample()
data_sample_copy.gt_instances = \
data_sample.gt_instances.clone()
data_sample_copy.pred_instances = \
data_sample.pred_instances.clone()
data_sample_copy.track_id = data_sample.track_id
kpts = data_sample.pred_instances.keypoints
bboxes = data_sample.pred_instances.bboxes
keypoints = []
for k in range(len(kpts)):
kpt = kpts[k]
if not disable_norm_pose_2d:
bbox = bboxes[k]
center = np.array([[(bbox[0] + bbox[2]) / 2,
(bbox[1] + bbox[3]) / 2]])
scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
keypoints.append((kpt[:, :2] - center) / scale *
bbox_scale + bbox_center)
else:
keypoints.append(kpt[:, :2])
data_sample_copy.pred_instances.set_field(
np.array(keypoints), 'keypoints')
pose_res_copy.append(data_sample_copy)
pose_results_2d_copy.append(pose_res_copy)
pose_sequences_2d = collate_pose_sequence(pose_results_2d_copy, True,
target_idx)
if not pose_sequences_2d:
return []
data_list = []
for i, pose_seq in enumerate(pose_sequences_2d):
data_info = dict()
keypoints_2d = pose_seq.pred_instances.keypoints
keypoints_2d = np.squeeze(
keypoints_2d,
axis=0) if keypoints_2d.ndim == 4 else keypoints_2d
T, K, C = keypoints_2d.shape
data_info['keypoints'] = keypoints_2d
data_info['keypoints_visible'] = np.ones((
T,
K,
),
dtype=np.float32)
data_info['lifting_target'] = np.zeros((1, K, 3), dtype=np.float32)
data_info['factor'] = np.zeros((T, ), dtype=np.float32)
data_info['lifting_target_visible'] = np.ones((1, K, 1),
dtype=np.float32)
data_info['camera_param'] = dict(w=width, h=height)
data_info.update(self.model.dataset_meta)
data_info = self.pipeline(data_info)
data_info['data_samples'].set_field(
img_path, 'img_path', field_type='metainfo')
data_list.append(data_info)
return data_list
@torch.no_grad()
def forward(self,
inputs: Union[dict, tuple],
disable_rebase_keypoint: bool = False):
"""Perform forward pass through the model and process the results.
Args:
inputs (Union[dict, tuple]): The inputs for the model.
disable_rebase_keypoint (bool, optional): Flag to disable rebasing
the height of the keypoints. Defaults to False.
Returns:
list: A list of data samples, each containing the model's output
results.
"""
pose_lift_results = self.model.test_step(inputs)
# Post-processing of pose estimation results
pose_est_results_converted = self._buffer['pose_est_results_list'][-1]
for idx, pose_lift_res in enumerate(pose_lift_results):
# Update track_id from the pose estimation results
pose_lift_res.track_id = pose_est_results_converted[idx].get(
'track_id', 1e4)
# align the shape of output keypoints coordinates and scores
keypoints = pose_lift_res.pred_instances.keypoints
keypoint_scores = pose_lift_res.pred_instances.keypoint_scores
if keypoint_scores.ndim == 3:
pose_lift_results[idx].pred_instances.keypoint_scores = \
np.squeeze(keypoint_scores, axis=1)
if keypoints.ndim == 4:
keypoints = np.squeeze(keypoints, axis=1)
# Invert x and z values of the keypoints
keypoints = keypoints[..., [0, 2, 1]]
keypoints[..., 0] = -keypoints[..., 0]
keypoints[..., 2] = -keypoints[..., 2]
# If rebase_keypoint_height is True, adjust z-axis values
if not disable_rebase_keypoint:
keypoints[..., 2] -= np.min(
keypoints[..., 2], axis=-1, keepdims=True)
pose_lift_results[idx].pred_instances.keypoints = keypoints
pose_lift_results = sorted(
pose_lift_results, key=lambda x: x.get('track_id', 1e4))
data_samples = [merge_data_samples(pose_lift_results)]
return data_samples
def visualize(self,
inputs: list,
preds: List[PoseDataSample],
return_vis: bool = False,
show: bool = False,
draw_bbox: bool = False,
wait_time: float = 0,
radius: int = 3,
thickness: int = 1,
kpt_thr: float = 0.3,
num_instances: int = 1,
vis_out_dir: str = '',
window_name: str = '',
window_close_event_handler: Optional[Callable] = None
) -> List[np.ndarray]:
"""Visualize predictions.
Args:
inputs (list): Inputs preprocessed by :meth:`_inputs_to_list`.
preds (Any): Predictions of the model.
return_vis (bool): Whether to return images with predicted results.
show (bool): Whether to display the image in a popup window.
Defaults to False.
wait_time (float): The interval of show (ms). Defaults to 0
draw_bbox (bool): Whether to draw the bounding boxes.
Defaults to False
radius (int): Keypoint radius for visualization. Defaults to 3
thickness (int): Link thickness for visualization. Defaults to 1
kpt_thr (float): The threshold to visualize the keypoints.
Defaults to 0.3
vis_out_dir (str, optional): Directory to save visualization
results w/o predictions. If left as empty, no file will
be saved. Defaults to ''.
window_name (str, optional): Title of display window.
window_close_event_handler (callable, optional):
Returns:
List[np.ndarray]: Visualization results.
"""
if (not return_vis) and (not show) and (not vis_out_dir):
return
if getattr(self, 'visualizer', None) is None:
raise ValueError('Visualization needs the "visualizer" term'
'defined in the config, but got None.')
self.visualizer.radius = radius
self.visualizer.line_width = thickness
det_kpt_color = self.pose2d_model.visualizer.kpt_color
det_dataset_skeleton = self.pose2d_model.visualizer.skeleton
det_dataset_link_color = self.pose2d_model.visualizer.link_color
self.visualizer.det_kpt_color = det_kpt_color
self.visualizer.det_dataset_skeleton = det_dataset_skeleton
self.visualizer.det_dataset_link_color = det_dataset_link_color
results = []
for single_input, pred in zip(inputs, preds):
if isinstance(single_input, str):
img = mmcv.imread(single_input, channel_order='rgb')
elif isinstance(single_input, np.ndarray):
img = mmcv.bgr2rgb(single_input)
else:
raise ValueError('Unsupported input type: '
f'{type(single_input)}')
# since visualization and inference utilize the same process,
# the wait time is reduced when a video input is utilized,
# thereby eliminating the issue of inference getting stuck.
wait_time = 1e-5 if self._video_input else wait_time
if num_instances < 0:
num_instances = len(pred.pred_instances)
visualization = self.visualizer.add_datasample(
window_name,
img,
data_sample=pred,
det_data_sample=self._buffer['pose2d_results'],
draw_gt=False,
draw_bbox=draw_bbox,
show=show,
wait_time=wait_time,
dataset_2d=self.pose2d_model.model.
dataset_meta['dataset_name'],
dataset_3d=self.model.dataset_meta['dataset_name'],
kpt_thr=kpt_thr,
num_instances=num_instances)
results.append(visualization)
if vis_out_dir:
img_name = os.path.basename(pred.metainfo['img_path']) \
if 'img_path' in pred.metainfo else None
self.save_visualization(
visualization,
vis_out_dir,
img_name=img_name,
)
if return_vis:
return results
else:
return []
|