File size: 8,304 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple

import numpy as np

from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec
from .utils.gaussian_heatmap import generate_3d_gaussian_heatmaps
from .utils.post_processing import get_heatmap_3d_maximum


@KEYPOINT_CODECS.register_module()
class Hand3DHeatmap(BaseKeypointCodec):
    r"""Generate target 3d heatmap and relative root depth for hand datasets.

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D

    Args:
        image_size (tuple): Size of image. Default: ``[256, 256]``.
        root_heatmap_size (int): Size of heatmap of root head.
            Default: 64.
        heatmap_size (tuple): Size of heatmap. Default: ``[64, 64, 64]``.
        heatmap3d_depth_bound (float): Boundary for 3d heatmap depth.
            Default: 400.0.
        heatmap_size_root (int): Size of 3d heatmap root. Default: 64.
        depth_size (int): Number of depth discretization size, used for
            decoding. Defaults to 64.
        root_depth_bound (float): Boundary for 3d heatmap root depth.
            Default: 400.0.
        use_different_joint_weights (bool): Whether to use different joint
            weights. Default: ``False``.
        sigma (int): Sigma of heatmap gaussian. Default: 2.
        joint_indices (list, optional): Indices of joints used for heatmap
            generation. If None (default) is given, all joints will be used.
            Default: ``None``.
        max_bound (float): The maximal value of heatmap. Default: 1.0.
    """

    auxiliary_encode_keys = {
        'dataset_keypoint_weights', 'rel_root_depth', 'rel_root_valid',
        'hand_type', 'hand_type_valid', 'focal', 'principal_pt'
    }

    instance_mapping_table = {
        'keypoints': 'keypoints',
        'keypoints_visible': 'keypoints_visible',
        'keypoints_cam': 'keypoints_cam',
    }

    label_mapping_table = {
        'keypoint_weights': 'keypoint_weights',
        'root_depth_weight': 'root_depth_weight',
        'type_weight': 'type_weight',
        'root_depth': 'root_depth',
        'type': 'type'
    }

    def __init__(self,
                 image_size: Tuple[int, int] = [256, 256],
                 root_heatmap_size: int = 64,
                 heatmap_size: Tuple[int, int, int] = [64, 64, 64],
                 heatmap3d_depth_bound: float = 400.0,
                 heatmap_size_root: int = 64,
                 root_depth_bound: float = 400.0,
                 depth_size: int = 64,
                 use_different_joint_weights: bool = False,
                 sigma: int = 2,
                 joint_indices: Optional[list] = None,
                 max_bound: float = 1.0):
        super().__init__()

        self.image_size = np.array(image_size)
        self.root_heatmap_size = root_heatmap_size
        self.heatmap_size = np.array(heatmap_size)
        self.heatmap3d_depth_bound = heatmap3d_depth_bound
        self.heatmap_size_root = heatmap_size_root
        self.root_depth_bound = root_depth_bound
        self.depth_size = depth_size
        self.use_different_joint_weights = use_different_joint_weights

        self.sigma = sigma
        self.joint_indices = joint_indices
        self.max_bound = max_bound
        self.scale_factor = (np.array(image_size) /
                             heatmap_size[:-1]).astype(np.float32)

    def encode(
        self,
        keypoints: np.ndarray,
        keypoints_visible: Optional[np.ndarray],
        dataset_keypoint_weights: Optional[np.ndarray],
        rel_root_depth: np.float32,
        rel_root_valid: np.float32,
        hand_type: np.ndarray,
        hand_type_valid: np.ndarray,
        focal: np.ndarray,
        principal_pt: np.ndarray,
    ) -> dict:
        """Encoding keypoints from input image space to input image space.

        Args:
            keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D).
            keypoints_visible (np.ndarray, optional): Keypoint visibilities in
                shape (N, K).
            dataset_keypoint_weights (np.ndarray, optional): Keypoints weight
                in shape (K, ).
            rel_root_depth (np.float32): Relative root depth.
            rel_root_valid (float): Validity of relative root depth.
            hand_type (np.ndarray): Type of hand encoded as a array.
            hand_type_valid (np.ndarray): Validity of hand type.
            focal (np.ndarray): Focal length of camera.
            principal_pt (np.ndarray): Principal point of camera.

        Returns:
            encoded (dict): Contains the following items:

                - heatmaps (np.ndarray): The generated heatmap in shape
                  (K * D, H, W) where [W, H, D] is the `heatmap_size`
                - keypoint_weights (np.ndarray): The target weights in shape
                  (N, K)
                - root_depth (np.ndarray): Encoded relative root depth
                - root_depth_weight (np.ndarray): The weights of relative root
                  depth
                - type (np.ndarray): Encoded hand type
                - type_weight (np.ndarray): The weights of hand type
        """
        if keypoints_visible is None:
            keypoints_visible = np.ones(keypoints.shape[:-1], dtype=np.float32)

        if self.use_different_joint_weights:
            assert dataset_keypoint_weights is not None, 'To use different ' \
                'joint weights,`dataset_keypoint_weights` cannot be None.'

        heatmaps, keypoint_weights = generate_3d_gaussian_heatmaps(
            heatmap_size=self.heatmap_size,
            keypoints=keypoints,
            keypoints_visible=keypoints_visible,
            sigma=self.sigma,
            image_size=self.image_size,
            heatmap3d_depth_bound=self.heatmap3d_depth_bound,
            joint_indices=self.joint_indices,
            max_bound=self.max_bound,
            use_different_joint_weights=self.use_different_joint_weights,
            dataset_keypoint_weights=dataset_keypoint_weights)

        rel_root_depth = (rel_root_depth / self.root_depth_bound +
                          0.5) * self.heatmap_size_root
        rel_root_valid = rel_root_valid * (rel_root_depth >= 0) * (
            rel_root_depth <= self.heatmap_size_root)

        encoded = dict(
            heatmaps=heatmaps,
            keypoint_weights=keypoint_weights,
            root_depth=rel_root_depth * np.ones(1, dtype=np.float32),
            type=hand_type,
            type_weight=hand_type_valid,
            root_depth_weight=rel_root_valid * np.ones(1, dtype=np.float32))
        return encoded

    def decode(self, heatmaps: np.ndarray, root_depth: np.ndarray,
               hand_type: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        """Decode keypoint coordinates from heatmaps. The decoded keypoint
        coordinates are in the input image space.

        Args:
            heatmaps (np.ndarray): Heatmaps in shape (K, D, H, W)
            root_depth (np.ndarray): Root depth prediction.
            hand_type (np.ndarray): Hand type prediction.

        Returns:
            tuple:
            - keypoints (np.ndarray): Decoded keypoint coordinates in shape
                (N, K, D)
            - scores (np.ndarray): The keypoint scores in shape (N, K). It
                usually represents the confidence of the keypoint prediction
        """
        heatmap3d = heatmaps.copy()

        keypoints, scores = get_heatmap_3d_maximum(heatmap3d)

        # transform keypoint depth to camera space
        keypoints[..., 2] = (keypoints[..., 2] / self.depth_size -
                             0.5) * self.heatmap3d_depth_bound

        # Unsqueeze the instance dimension for single-instance results
        keypoints, scores = keypoints[None], scores[None]

        # Restore the keypoint scale
        keypoints[..., :2] = keypoints[..., :2] * self.scale_factor

        # decode relative hand root depth
        # transform relative root depth to camera space
        rel_root_depth = ((root_depth / self.root_heatmap_size - 0.5) *
                          self.root_depth_bound)

        hand_type = (hand_type > 0).reshape(1, -1).astype(int)

        return keypoints, scores, rel_root_depth, hand_type