File size: 10,013 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright (c) OpenMMLab. All rights reserved.

from copy import deepcopy
from typing import Optional, Tuple

import numpy as np

from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec
from .utils import camera_to_image_coord


@KEYPOINT_CODECS.register_module()
class MotionBERTLabel(BaseKeypointCodec):
    r"""Generate keypoint and label coordinates for `MotionBERT`_ by Zhu et al
    (2022).

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D
        - pose-lifitng target dimension: C

    Args:
        num_keypoints (int): The number of keypoints in the dataset.
        root_index (int): Root keypoint index in the pose. Default: 0.
        remove_root (bool): If true, remove the root keypoint from the pose.
            Default: ``False``.
        save_index (bool): If true, store the root position separated from the
            original pose, only takes effect if ``remove_root`` is ``True``.
            Default: ``False``.
        concat_vis (bool): If true, concat the visibility item of keypoints.
            Default: ``False``.
        rootrel (bool): If true, the root keypoint will be set to the
            coordinate origin. Default: ``False``.
        mode (str): Indicating whether the current mode is 'train' or 'test'.
            Default: ``'test'``.
    """

    auxiliary_encode_keys = {
        'lifting_target', 'lifting_target_visible', 'camera_param', 'factor'
    }

    instance_mapping_table = dict(
        lifting_target='lifting_target',
        lifting_target_visible='lifting_target_visible',
    )
    label_mapping_table = dict(
        trajectory_weights='trajectory_weights',
        lifting_target_label='lifting_target_label',
        lifting_target_weight='lifting_target_weight')

    def __init__(self,
                 num_keypoints: int,
                 root_index: int = 0,
                 remove_root: bool = False,
                 save_index: bool = False,
                 concat_vis: bool = False,
                 rootrel: bool = False,
                 mode: str = 'test'):
        super().__init__()

        self.num_keypoints = num_keypoints
        self.root_index = root_index
        self.remove_root = remove_root
        self.save_index = save_index
        self.concat_vis = concat_vis
        self.rootrel = rootrel
        assert mode.lower() in {'train', 'test'
                                }, (f'Unsupported mode {mode}, '
                                    'mode should be one of ("train", "test").')
        self.mode = mode.lower()

    def encode(self,
               keypoints: np.ndarray,
               keypoints_visible: Optional[np.ndarray] = None,
               lifting_target: Optional[np.ndarray] = None,
               lifting_target_visible: Optional[np.ndarray] = None,
               camera_param: Optional[dict] = None,
               factor: Optional[np.ndarray] = None) -> dict:
        """Encoding keypoints from input image space to normalized space.

        Args:
            keypoints (np.ndarray): Keypoint coordinates in shape (B, T, K, D).
            keypoints_visible (np.ndarray, optional): Keypoint visibilities in
                shape (B, T, K).
            lifting_target (np.ndarray, optional): 3d target coordinate in
                shape (T, K, C).
            lifting_target_visible (np.ndarray, optional): Target coordinate in
                shape (T, K, ).
            camera_param (dict, optional): The camera parameter dictionary.
            factor (np.ndarray, optional): The factor mapping camera and image
                  coordinate in shape (T, ).

        Returns:
            encoded (dict): Contains the following items:

                - keypoint_labels (np.ndarray): The processed keypoints in
                  shape like (N, K, D).
                - keypoint_labels_visible (np.ndarray): The processed
                  keypoints' weights in shape (N, K, ) or (N, K-1, ).
                - lifting_target_label: The processed target coordinate in
                  shape (K, C) or (K-1, C).
                - lifting_target_weight (np.ndarray): The target weights in
                  shape (K, ) or (K-1, ).
                - factor (np.ndarray): The factor mapping camera and image
                  coordinate in shape (T, 1).
        """
        if keypoints_visible is None:
            keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)

        # set initial value for `lifting_target_weight`
        if lifting_target_visible is None:
            lifting_target_visible = np.ones(
                lifting_target.shape[:-1], dtype=np.float32)
            lifting_target_weight = lifting_target_visible
        else:
            valid = lifting_target_visible > 0.5
            lifting_target_weight = np.where(valid, 1., 0.).astype(np.float32)

        if camera_param is None:
            camera_param = dict()

        encoded = dict()

        assert lifting_target is not None
        lifting_target_label = lifting_target.copy()
        keypoint_labels = keypoints.copy()

        assert keypoint_labels.ndim in {
            2, 3
        }, (f'Keypoint labels should have 2 or 3 dimensions, '
            f'but got {keypoint_labels.ndim}.')
        if keypoint_labels.ndim == 2:
            keypoint_labels = keypoint_labels[None, ...]

        # Normalize the 2D keypoint coordinate with image width and height
        _camera_param = deepcopy(camera_param)
        assert 'w' in _camera_param and 'h' in _camera_param, (
            'Camera parameters should contain "w" and "h".')
        w, h = _camera_param['w'], _camera_param['h']
        keypoint_labels[
            ..., :2] = keypoint_labels[..., :2] / w * 2 - [1, h / w]

        # convert target to image coordinate
        T = keypoint_labels.shape[0]
        factor_ = np.array([4] * T, dtype=np.float32).reshape(T, )
        if 'f' in _camera_param and 'c' in _camera_param:
            lifting_target_label, factor_ = camera_to_image_coord(
                self.root_index, lifting_target_label, _camera_param)
        if self.mode == 'train':
            w, h = w / 1000, h / 1000
            lifting_target_label[
                ..., :2] = lifting_target_label[..., :2] / w * 2 - [1, h / w]
            lifting_target_label[..., 2] = lifting_target_label[..., 2] / w * 2
        lifting_target_label[..., :, :] = lifting_target_label[
            ..., :, :] - lifting_target_label[...,
                                              self.root_index:self.root_index +
                                              1, :]
        if factor is None or factor[0] == 0:
            factor = factor_
        if factor.ndim == 1:
            factor = factor[:, None]
        if self.mode == 'test':
            lifting_target_label *= factor[..., None]

        if self.concat_vis:
            keypoints_visible_ = keypoints_visible
            if keypoints_visible.ndim == 2:
                keypoints_visible_ = keypoints_visible[..., None]
            keypoint_labels = np.concatenate(
                (keypoint_labels, keypoints_visible_), axis=2)

        encoded['keypoint_labels'] = keypoint_labels
        encoded['keypoint_labels_visible'] = keypoints_visible
        encoded['lifting_target_label'] = lifting_target_label
        encoded['lifting_target_weight'] = lifting_target_weight
        encoded['lifting_target'] = lifting_target_label
        encoded['lifting_target_visible'] = lifting_target_visible
        encoded['factor'] = factor

        return encoded

    def decode(
        self,
        encoded: np.ndarray,
        w: Optional[np.ndarray] = None,
        h: Optional[np.ndarray] = None,
        factor: Optional[np.ndarray] = None,
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Decode keypoint coordinates from normalized space to input image
        space.

        Args:
            encoded (np.ndarray): Coordinates in shape (N, K, C).
            w (np.ndarray, optional): The image widths in shape (N, ).
                Default: ``None``.
            h (np.ndarray, optional): The image heights in shape (N, ).
                Default: ``None``.
            factor (np.ndarray, optional): The factor for projection in shape
                (N, ). Default: ``None``.

        Returns:
            keypoints (np.ndarray): Decoded coordinates in shape (N, K, C).
            scores (np.ndarray): The keypoint scores in shape (N, K).
        """
        keypoints = encoded.copy()
        scores = np.ones(keypoints.shape[:-1], dtype=np.float32)

        if self.rootrel:
            keypoints[..., 0, :] = 0

        if w is not None and w.size > 0:
            assert w.shape == h.shape, (f'w and h should have the same shape, '
                                        f'but got {w.shape} and {h.shape}.')
            assert w.shape[0] == keypoints.shape[0], (
                f'w and h should have the same batch size, '
                f'but got {w.shape[0]} and {keypoints.shape[0]}.')
            assert w.ndim in {1,
                              2}, (f'w and h should have 1 or 2 dimensions, '
                                   f'but got {w.ndim}.')
            if w.ndim == 1:
                w = w[:, None]
                h = h[:, None]
            trans = np.append(
                np.ones((w.shape[0], 1)), h / w, axis=1)[:, None, :]
            keypoints[..., :2] = (keypoints[..., :2] + trans) * w[:, None] / 2
            keypoints[..., 2:] = keypoints[..., 2:] * w[:, None] / 2

        if factor is not None and factor.size > 0:
            assert factor.shape[0] == keypoints.shape[0], (
                f'factor should have the same batch size, '
                f'but got {factor.shape[0]} and {keypoints.shape[0]}.')
            keypoints *= factor[..., None]

        keypoints[..., :, :] = keypoints[..., :, :] - keypoints[
            ..., self.root_index:self.root_index + 1, :]
        keypoints /= 1000.
        return keypoints, scores