File size: 14,943 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
from typing import Optional, Tuple, Union

import numpy as np
from scipy.spatial.distance import cdist


def generate_3d_gaussian_heatmaps(
    heatmap_size: Tuple[int, int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma: Union[float, Tuple[float], np.ndarray],
    image_size: Tuple[int, int],
    heatmap3d_depth_bound: float = 400.0,
    joint_indices: Optional[list] = None,
    max_bound: float = 1.0,
    use_different_joint_weights: bool = False,
    dataset_keypoint_weights: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate 3d gaussian heatmaps of keypoints.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H, D]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, C)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        sigma (float or List[float]): A list of sigma values of the Gaussian
            heatmap for each instance. If sigma is given as a single float
            value, it will be expanded into a tuple
        image_size (Tuple[int, int]): Size of input image.
        heatmap3d_depth_bound (float): Boundary for 3d heatmap depth.
            Default: 400.0.
        joint_indices (List[int], optional): Indices of joints used for heatmap
            generation. If None (default) is given, all joints will be used.
            Default: ``None``.
        max_bound (float): The maximal value of heatmap. Default: 1.0.
        use_different_joint_weights (bool): Whether to use different joint
            weights. Default: ``False``.
        dataset_keypoint_weights (np.ndarray, optional): Keypoints weight in
            shape (K, ).

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K * D, H, W) where [W, H, D] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)
    """

    W, H, D = heatmap_size

    # select the joints used for target generation
    if joint_indices is not None:
        keypoints = keypoints[:, joint_indices, ...]
        keypoints_visible = keypoints_visible[:, joint_indices, ...]
    N, K, _ = keypoints.shape

    heatmaps = np.zeros([K, D, H, W], dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    if isinstance(sigma, (int, float)):
        sigma = (sigma, ) * N

    for n in range(N):
        # 3-sigma rule
        radius = sigma[n] * 3

        # joint location in heatmap coordinates
        mu_x = keypoints[n, :, 0] * W / image_size[0]  # (K, )
        mu_y = keypoints[n, :, 1] * H / image_size[1]
        mu_z = (keypoints[n, :, 2] / heatmap3d_depth_bound + 0.5) * D

        keypoint_weights[n, ...] = keypoint_weights[n, ...] * (mu_z >= 0) * (
            mu_z < D)
        if use_different_joint_weights:
            keypoint_weights[
                n] = keypoint_weights[n] * dataset_keypoint_weights
        # xy grid
        gaussian_size = 2 * radius + 1

        # get neighboring voxels coordinates
        x = y = z = np.arange(gaussian_size, dtype=np.float32) - radius
        zz, yy, xx = np.meshgrid(z, y, x)

        xx = np.expand_dims(xx, axis=0)
        yy = np.expand_dims(yy, axis=0)
        zz = np.expand_dims(zz, axis=0)
        mu_x = np.expand_dims(mu_x, axis=(-1, -2, -3))
        mu_y = np.expand_dims(mu_y, axis=(-1, -2, -3))
        mu_z = np.expand_dims(mu_z, axis=(-1, -2, -3))

        xx, yy, zz = xx + mu_x, yy + mu_y, zz + mu_z
        local_size = xx.shape[1]

        # round the coordinates
        xx = xx.round().clip(0, W - 1)
        yy = yy.round().clip(0, H - 1)
        zz = zz.round().clip(0, D - 1)

        # compute the target value near joints
        gaussian = np.exp(-((xx - mu_x)**2 + (yy - mu_y)**2 + (zz - mu_z)**2) /
                          (2 * sigma[n]**2))

        # put the local target value to the full target heatmap
        idx_joints = np.tile(
            np.expand_dims(np.arange(K), axis=(-1, -2, -3)),
            [1, local_size, local_size, local_size])
        idx = np.stack([idx_joints, zz, yy, xx],
                       axis=-1).astype(int).reshape(-1, 4)

        heatmaps[idx[:, 0], idx[:, 1], idx[:, 2], idx[:, 3]] = np.maximum(
            heatmaps[idx[:, 0], idx[:, 1], idx[:, 2], idx[:, 3]],
            gaussian.reshape(-1))

    heatmaps = (heatmaps * max_bound).reshape(-1, H, W)

    return heatmaps, keypoint_weights


def generate_gaussian_heatmaps(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma: Union[float, Tuple[float], np.ndarray],
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate gaussian heatmaps of keypoints.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        sigma (float or List[float]): A list of sigma values of the Gaussian
            heatmap for each instance. If sigma is given as a single float
            value, it will be expanded into a tuple

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    if isinstance(sigma, (int, float)):
        sigma = (sigma, ) * N

    for n in range(N):
        # 3-sigma rule
        radius = sigma[n] * 3

        # xy grid
        gaussian_size = 2 * radius + 1
        x = np.arange(0, gaussian_size, 1, dtype=np.float32)
        y = x[:, None]
        x0 = y0 = gaussian_size // 2

        for k in range(K):
            # skip unlabled keypoints
            if keypoints_visible[n, k] < 0.5:
                continue

            # get gaussian center coordinates
            mu = (keypoints[n, k] + 0.5).astype(np.int64)

            # check that the gaussian has in-bounds part
            left, top = (mu - radius).astype(np.int64)
            right, bottom = (mu + radius + 1).astype(np.int64)

            if left >= W or top >= H or right < 0 or bottom < 0:
                keypoint_weights[n, k] = 0
                continue

            # The gaussian is not normalized,
            # we want the center value to equal 1
            gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma[n]**2))

            # valid range in gaussian
            g_x1 = max(0, -left)
            g_x2 = min(W, right) - left
            g_y1 = max(0, -top)
            g_y2 = min(H, bottom) - top

            # valid range in heatmap
            h_x1 = max(0, left)
            h_x2 = min(W, right)
            h_y1 = max(0, top)
            h_y2 = min(H, bottom)

            heatmap_region = heatmaps[k, h_y1:h_y2, h_x1:h_x2]
            gaussian_regsion = gaussian[g_y1:g_y2, g_x1:g_x2]

            _ = np.maximum(
                heatmap_region, gaussian_regsion, out=heatmap_region)

    return heatmaps, keypoint_weights


def generate_unbiased_gaussian_heatmaps(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma: float,
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate gaussian heatmaps of keypoints using `Dark Pose`_.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)

    .. _`Dark Pose`: https://arxiv.org/abs/1910.06278
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    # 3-sigma rule
    radius = sigma * 3

    # xy grid
    x = np.arange(0, W, 1, dtype=np.float32)
    y = np.arange(0, H, 1, dtype=np.float32)[:, None]

    for n, k in product(range(N), range(K)):
        # skip unlabled keypoints
        if keypoints_visible[n, k] < 0.5:
            continue

        mu = keypoints[n, k]
        # check that the gaussian has in-bounds part
        left, top = mu - radius
        right, bottom = mu + radius + 1

        if left >= W or top >= H or right < 0 or bottom < 0:
            keypoint_weights[n, k] = 0
            continue

        gaussian = np.exp(-((x - mu[0])**2 + (y - mu[1])**2) / (2 * sigma**2))

        _ = np.maximum(gaussian, heatmaps[k], out=heatmaps[k])

    return heatmaps, keypoint_weights


def generate_udp_gaussian_heatmaps(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma,
    keypoints_visibility: np.ndarray,
    increase_sigma_with_padding: bool = False,
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate gaussian heatmaps of keypoints using `UDP`_.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        sigma (float): The sigma value of the Gaussian heatmap
        keypoints_visibility (np.ndarray): The visibility bit for each keypoint (N, K)
        increase_sigma_with_padding (bool): Whether to increase the sigma
            value with padding. Default: False

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)

    .. _`UDP`: https://arxiv.org/abs/1911.07524
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    if isinstance(sigma, (int, float)):
        scaled_sigmas = sigma * np.ones((N, K), dtype=np.float32)
        sigmas = np.array([sigma] * K).reshape(1, -1).repeat(N, axis=0)
    else:
        scaled_sigmas = np.array(sigma).reshape(1, -1).repeat(N, axis=0)
        sigmas = np.array(sigma).reshape(1, -1).repeat(N, axis=0)

    scales_arr = np.ones((N, K), dtype=np.float32)
    if increase_sigma_with_padding:
        diag = np.sqrt(W**2 + H**2)
        for n in range(N):
            image_kpts = keypoints[n, :].squeeze()
            vis_kpts = image_kpts[keypoints_visibility[n, :] > 0.5]

            # Compute the distance between img_kpts and visible_kpts
            if vis_kpts.size == 0:
                min_dists = np.ones(image_kpts.shape[0]) * diag
            else:
                dists = cdist(image_kpts, vis_kpts, metric='euclidean')
                min_dists = np.min(dists, axis=1)

            scales = min_dists / diag * 2.0     # Maximum distance (diagonal) results in .0*sigma
            scales_arr[n, :] = scales
            scaled_sigmas[n, :] = sigma * (1+scales)

    # print(scales_arr)
    # print(scaled_sigmas)

    for n, k in product(range(N), range(K)):
        scaled_sigma = scaled_sigmas[n, k]
        # skip unlabled keypoints
        if keypoints_visible[n, k] < 0.5:
            continue
        
        # 3-sigma rule
        radius = scaled_sigma * 3

        # xy grid
        gaussian_size = 2 * radius + 1
        x = np.arange(0, gaussian_size, 1, dtype=np.float32)
        y = x[:, None]

        mu = (keypoints[n, k] + 0.5).astype(np.int64)
        # check that the gaussian has in-bounds part
        left, top = (mu - radius).round().astype(np.int64)
        right, bottom = (mu + radius + 1).round().astype(np.int64)
        # left, top = (mu - radius).astype(np.int64)
        # right, bottom = (mu + radius + 1).astype(np.int64)

        if left >= W or top >= H or right < 0 or bottom < 0:
            keypoint_weights[n, k] = 0
            continue

        mu_ac = keypoints[n, k]
        x0 = y0 = gaussian_size // 2
        x0 += mu_ac[0] - mu[0]
        y0 += mu_ac[1] - mu[1]
        gaussian = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * scaled_sigma**2))

        # Normalize Gaussian such that scaled_sigma = sigma is the norm
        gaussian = gaussian / (scaled_sigma / sigmas[n, k])

        # valid range in gaussian
        g_x1 = max(0, -left)
        g_x2 = min(W, right) - left
        g_y1 = max(0, -top)
        g_y2 = min(H, bottom) - top

        # valid range in heatmap
        h_x1 = max(0, left)
        h_x2 = min(W, right)
        h_y1 = max(0, top)
        h_y2 = min(H, bottom)

        # breakpoint()

        heatmap_region = heatmaps[k, h_y1:h_y2, h_x1:h_x2]
        gaussian_regsion = gaussian[g_y1:g_y2, g_x1:g_x2]

        _ = np.maximum(heatmap_region, gaussian_regsion, out=heatmap_region)

    return heatmaps, keypoint_weights


def generate_onehot_heatmaps(
    heatmap_size: Tuple[int, int],
    keypoints: np.ndarray,
    keypoints_visible: np.ndarray,
    sigma,
    keypoints_visibility: np.ndarray,
    increase_sigma_with_padding: bool = False,
) -> Tuple[np.ndarray, np.ndarray]:
    """Generate gaussian heatmaps of keypoints using `UDP`_.

    Args:
        heatmap_size (Tuple[int, int]): Heatmap size in [W, H]
        keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D)
        keypoints_visible (np.ndarray): Keypoint visibilities in shape
            (N, K)
        sigma (float): The sigma value of the Gaussian heatmap
        keypoints_visibility (np.ndarray): The visibility bit for each keypoint (N, K)
        increase_sigma_with_padding (bool): Whether to increase the sigma
            value with padding. Default: False

    Returns:
        tuple:
        - heatmaps (np.ndarray): The generated heatmap in shape
            (K, H, W) where [W, H] is the `heatmap_size`
        - keypoint_weights (np.ndarray): The target weights in shape
            (N, K)

    .. _`UDP`: https://arxiv.org/abs/1911.07524
    """

    N, K, _ = keypoints.shape
    W, H = heatmap_size

    heatmaps = np.zeros((K, H, W), dtype=np.float32)
    keypoint_weights = keypoints_visible.copy()

    for n, k in product(range(N), range(K)):
        # skip unlabled keypoints
        if keypoints_visible[n, k] < 0.5:
            continue        

        mu = (keypoints[n, k] + 0.5).astype(np.int64)
        

        if mu[0] < 0 or mu[0] >= W or mu[1] < 0 or mu[1] >= H:
            keypoint_weights[n, k] = 0
            continue

        heatmaps[k, mu[1], mu[0]] = 1
    return heatmaps, keypoint_weights