Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,968 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import product
from typing import Tuple
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from scipy.signal import convolve2d
def get_simcc_normalized(batch_pred_simcc, sigma=None):
"""Normalize the predicted SimCC.
Args:
batch_pred_simcc (torch.Tensor): The predicted SimCC.
sigma (float): The sigma of the Gaussian distribution.
Returns:
torch.Tensor: The normalized SimCC.
"""
B, K, _ = batch_pred_simcc.shape
# Scale and clamp the tensor
if sigma is not None:
batch_pred_simcc = batch_pred_simcc / (sigma * np.sqrt(np.pi * 2))
batch_pred_simcc = batch_pred_simcc.clamp(min=0)
# Compute the binary mask
mask = (batch_pred_simcc.amax(dim=-1) > 1).reshape(B, K, 1)
# Normalize the tensor using the maximum value
norm = (batch_pred_simcc / batch_pred_simcc.amax(dim=-1).reshape(B, K, 1))
# Apply normalization
batch_pred_simcc = torch.where(mask, norm, batch_pred_simcc)
return batch_pred_simcc
def get_simcc_maximum(simcc_x: np.ndarray,
simcc_y: np.ndarray,
apply_softmax: bool = False
) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from simcc representations.
Note:
instance number: N
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
apply_softmax (bool): whether to apply softmax on the heatmap.
Defaults to False.
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (N, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (N, K)
"""
assert isinstance(simcc_x, np.ndarray), ('simcc_x should be numpy.ndarray')
assert isinstance(simcc_y, np.ndarray), ('simcc_y should be numpy.ndarray')
assert simcc_x.ndim == 2 or simcc_x.ndim == 3, (
f'Invalid shape {simcc_x.shape}')
assert simcc_y.ndim == 2 or simcc_y.ndim == 3, (
f'Invalid shape {simcc_y.shape}')
assert simcc_x.ndim == simcc_y.ndim, (
f'{simcc_x.shape} != {simcc_y.shape}')
if simcc_x.ndim == 3:
N, K, Wx = simcc_x.shape
simcc_x = simcc_x.reshape(N * K, -1)
simcc_y = simcc_y.reshape(N * K, -1)
else:
N = None
if apply_softmax:
simcc_x = simcc_x - np.max(simcc_x, axis=1, keepdims=True)
simcc_y = simcc_y - np.max(simcc_y, axis=1, keepdims=True)
ex, ey = np.exp(simcc_x), np.exp(simcc_y)
simcc_x = ex / np.sum(ex, axis=1, keepdims=True)
simcc_y = ey / np.sum(ey, axis=1, keepdims=True)
x_locs = np.argmax(simcc_x, axis=1)
y_locs = np.argmax(simcc_y, axis=1)
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
max_val_x = np.amax(simcc_x, axis=1)
max_val_y = np.amax(simcc_y, axis=1)
mask = max_val_x > max_val_y
max_val_x[mask] = max_val_y[mask]
vals = max_val_x
locs[vals <= 0.] = -1
if N:
locs = locs.reshape(N, K, 2)
vals = vals.reshape(N, K)
return locs, vals
def get_heatmap_3d_maximum(heatmaps: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from heatmaps.
Note:
batch_size: B
num_keypoints: K
heatmap dimension: D
heatmap height: H
heatmap width: W
Args:
heatmaps (np.ndarray): Heatmaps in shape (K, D, H, W) or
(B, K, D, H, W)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 3) or (B, K, 3)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (B, K)
"""
assert isinstance(heatmaps,
np.ndarray), ('heatmaps should be numpy.ndarray')
assert heatmaps.ndim == 4 or heatmaps.ndim == 5, (
f'Invalid shape {heatmaps.shape}')
if heatmaps.ndim == 4:
K, D, H, W = heatmaps.shape
B = None
heatmaps_flatten = heatmaps.reshape(K, -1)
else:
B, K, D, H, W = heatmaps.shape
heatmaps_flatten = heatmaps.reshape(B * K, -1)
z_locs, y_locs, x_locs = np.unravel_index(
np.argmax(heatmaps_flatten, axis=1), shape=(D, H, W))
locs = np.stack((x_locs, y_locs, z_locs), axis=-1).astype(np.float32)
vals = np.amax(heatmaps_flatten, axis=1)
locs[vals <= 0.] = -1
if B:
locs = locs.reshape(B, K, 3)
vals = vals.reshape(B, K)
return locs, vals
def get_heatmap_maximum(heatmaps: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from heatmaps.
Note:
batch_size: B
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
heatmaps (np.ndarray): Heatmaps in shape (K, H, W) or (B, K, H, W)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (B, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (B, K)
"""
assert isinstance(heatmaps,
np.ndarray), ('heatmaps should be numpy.ndarray')
assert heatmaps.ndim == 3 or heatmaps.ndim == 4, (
f'Invalid shape {heatmaps.shape}')
if heatmaps.ndim == 3:
K, H, W = heatmaps.shape
B = None
heatmaps_flatten = heatmaps.reshape(K, -1)
else:
B, K, H, W = heatmaps.shape
heatmaps_flatten = heatmaps.reshape(B * K, -1)
y_locs, x_locs = np.unravel_index(
np.argmax(heatmaps_flatten, axis=1), shape=(H, W))
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
vals = np.amax(heatmaps_flatten, axis=1)
locs[vals <= 0.] = -1
if B:
locs = locs.reshape(B, K, 2)
vals = vals.reshape(B, K)
return locs, vals
def gaussian_blur(heatmaps: np.ndarray, kernel: int = 11) -> np.ndarray:
"""Modulate heatmap distribution with Gaussian.
Note:
- num_keypoints: K
- heatmap height: H
- heatmap width: W
Args:
heatmaps (np.ndarray[K, H, W]): model predicted heatmaps.
kernel (int): Gaussian kernel size (K) for modulation, which should
match the heatmap gaussian sigma when training.
K=17 for sigma=3 and k=11 for sigma=2.
Returns:
np.ndarray ([K, H, W]): Modulated heatmap distribution.
"""
assert kernel % 2 == 1
border = (kernel - 1) // 2
K, H, W = heatmaps.shape
for k in range(K):
origin_max = np.max(heatmaps[k])
dr = np.zeros((H + 2 * border, W + 2 * border), dtype=np.float32)
dr[border:-border, border:-border] = heatmaps[k].copy()
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
heatmaps[k] = dr[border:-border, border:-border].copy()
heatmaps[k] *= origin_max / (np.max(heatmaps[k])+1e-12)
return heatmaps
def gaussian_blur1d(simcc: np.ndarray, kernel: int = 11) -> np.ndarray:
"""Modulate simcc distribution with Gaussian.
Note:
- num_keypoints: K
- simcc length: Wx
Args:
simcc (np.ndarray[K, Wx]): model predicted simcc.
kernel (int): Gaussian kernel size (K) for modulation, which should
match the simcc gaussian sigma when training.
K=17 for sigma=3 and k=11 for sigma=2.
Returns:
np.ndarray ([K, Wx]): Modulated simcc distribution.
"""
assert kernel % 2 == 1
border = (kernel - 1) // 2
N, K, Wx = simcc.shape
for n, k in product(range(N), range(K)):
origin_max = np.max(simcc[n, k])
dr = np.zeros((1, Wx + 2 * border), dtype=np.float32)
dr[0, border:-border] = simcc[n, k].copy()
dr = cv2.GaussianBlur(dr, (kernel, 1), 0)
simcc[n, k] = dr[0, border:-border].copy()
simcc[n, k] *= origin_max / np.max(simcc[n, k])
return simcc
def batch_heatmap_nms(batch_heatmaps: Tensor, kernel_size: int = 5):
"""Apply NMS on a batch of heatmaps.
Args:
batch_heatmaps (Tensor): batch heatmaps in shape (B, K, H, W)
kernel_size (int): The kernel size of the NMS which should be
a odd integer. Defaults to 5
Returns:
Tensor: The batch heatmaps after NMS.
"""
assert isinstance(kernel_size, int) and kernel_size % 2 == 1, \
f'The kernel_size should be an odd integer, got {kernel_size}'
padding = (kernel_size - 1) // 2
maximum = F.max_pool2d(
batch_heatmaps, kernel_size, stride=1, padding=padding)
maximum_indicator = torch.eq(batch_heatmaps, maximum)
batch_heatmaps = batch_heatmaps * maximum_indicator.float()
return batch_heatmaps
def get_heatmap_expected_value(heatmaps: np.ndarray, parzen_size: float = 0.1, return_heatmap: bool = False) -> Tuple[np.ndarray, np.ndarray]:
"""Get maximum response location and value from heatmaps.
Note:
batch_size: B
num_keypoints: K
heatmap height: H
heatmap width: W
Args:
heatmaps (np.ndarray): Heatmaps in shape (K, H, W) or (B, K, H, W)
Returns:
tuple:
- locs (np.ndarray): locations of maximum heatmap responses in shape
(K, 2) or (B, K, 2)
- vals (np.ndarray): values of maximum heatmap responses in shape
(K,) or (B, K)
"""
assert isinstance(heatmaps,
np.ndarray), ('heatmaps should be numpy.ndarray')
assert heatmaps.ndim == 3 or heatmaps.ndim == 4, (
f'Invalid shape {heatmaps.shape}')
assert parzen_size >= 0.0 and parzen_size <= 1.0, (
f'Invalid parzen_size {parzen_size}')
if heatmaps.ndim == 3:
K, H, W = heatmaps.shape
B = 1
FIRST_DIM = K
heatmaps_flatten = heatmaps.reshape(1, K, H, W)
else:
B, K, H, W = heatmaps.shape
FIRST_DIM = K*B
heatmaps_flatten = heatmaps.reshape(B, K, H, W)
# Blur heatmaps with Gaussian
# heatmaps_flatten = gaussian_blur(heatmaps_flatten, kernel=9)
# Zero out pixels far from the maximum for each heatmap
# heatmaps_tmp = heatmaps_flatten.copy().reshape(B*K, H*W)
# y_locs, x_locs = np.unravel_index(
# np.argmax(heatmaps_tmp, axis=1), shape=(H, W))
# locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
# heatmaps_flatten = heatmaps_flatten.reshape(B*K, H, W)
# for i, x in enumerate(x_locs):
# y = y_locs[i]
# start_x = int(max(0, x - 0.2*W))
# end_x = int(min(W, x + 0.2*W))
# start_y = int(max(0, y - 0.2*H))
# end_y = int(min(H, y + 0.2*H))
# mask = np.zeros((H, W))
# mask[start_y:end_y, start_x:end_x] = 1
# heatmaps_flatten[i] = heatmaps_flatten[i] * mask
# heatmaps_flatten = heatmaps_flatten.reshape(B, K, H, W)
bbox_area = np.sqrt(H/1.25 * W/1.25)
kpt_sigmas = np.array(
[2.6, 2.5, 2.5, 3.5, 3.5, 7.9, 7.9, 7.2, 7.2, 6.2, 6.2, 10.7, 10.7, 8.7, 8.7, 8.9, 8.9])/100
heatmaps_covolved = np.zeros_like(heatmaps_flatten)
for k in range(K):
vars = (kpt_sigmas[k]*2)**2
s = vars * bbox_area * 2
s = np.clip(s, 0.55, 3.0)
radius = np.ceil(s * 3).astype(int)
diameter = 2*radius + 1
diameter = np.ceil(diameter).astype(int)
# kernel_sizes[kernel_sizes % 2 == 0] += 1
center = diameter // 2
dist_x = np.arange(diameter) - center
dist_y = np.arange(diameter) - center
dist_x, dist_y = np.meshgrid(dist_x, dist_y)
dist = np.sqrt(dist_x**2 + dist_y**2)
oks_kernel = np.exp(-dist**2 / (2 * s))
oks_kernel = oks_kernel / oks_kernel.sum()
htm = heatmaps_flatten[:, k, :, :].reshape(-1, H, W)
# htm = np.pad(htm, ((0, 0), (radius, radius), (radius, radius)), mode='symmetric')
# htm = torch.from_numpy(htm).float()
# oks_kernel = torch.from_numpy(oks_kernel).float().to(htm.device).reshape(1, diameter, diameter)
oks_kernel = oks_kernel.reshape(1, diameter, diameter)
htm_conv = np.zeros_like(htm)
for b in range(B):
htm_conv[b, :, :] = convolve2d(htm[b, :, :], oks_kernel[b, :, :], mode='same', boundary='symm')
# htm_conv = F.conv2d(htm.unsqueeze(1), oks_kernel.unsqueeze(1), padding='same')
# htm_conv = htm_conv[:, :, radius:-radius, radius:-radius]
htm_conv = htm_conv.reshape(-1, 1, H, W)
heatmaps_covolved[:, k, :, :] = htm_conv
heatmaps_covolved = heatmaps_covolved.reshape(B*K, H*W)
y_locs, x_locs = np.unravel_index(
np.argmax(heatmaps_covolved, axis=1), shape=(H, W))
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
# Apply mean-shift to get sub-pixel locations
locs = _get_subpixel_maximums(heatmaps_covolved.reshape(B*K, H, W), locs)
# breakpoint()
# heatmaps_sums = heatmaps_flatten.sum(axis=(1, 2))
# norm_heatmaps = heatmaps_flatten.copy()
# norm_heatmaps[heatmaps_sums > 0] = heatmaps_flatten[heatmaps_sums > 0] / heatmaps_sums[heatmaps_sums > 0, None, None]
# # Compute Parzen window with Gaussian blur along the edge instead of simple mirroring
# x_pad = int(parzen_size * W + 0.5)
# y_pad = int(parzen_size * H + 0.5)
# # x_pad = 0
# # y_pad = 0
# kernel_size = int(min(H, W)*parzen_size + 0.5)
# if kernel_size % 2 == 0:
# kernel_size += 1
# # norm_heatmaps_pad_blur = np.pad(norm_heatmaps, ((0, 0), (x_pad, x_pad), (y_pad, y_pad)), mode='symmetric')
# norm_heatmaps_pad = np.pad(norm_heatmaps, ((0, 0), (y_pad, y_pad), (x_pad, x_pad)), mode='constant', constant_values=0)
# norm_heatmaps_pad_blur = gaussian_blur(norm_heatmaps_pad, kernel=kernel_size)
# # norm_heatmaps_pad_blur[:, x_pad:-x_pad, y_pad:-y_pad] = norm_heatmaps
# norm_heatmaps_pad_sum = norm_heatmaps_pad_blur.sum(axis=(1, 2))
# norm_heatmaps_pad_blur[norm_heatmaps_pad_sum>0] = norm_heatmaps_pad_blur[norm_heatmaps_pad_sum>0] / norm_heatmaps_pad_sum[norm_heatmaps_pad_sum>0, None, None]
# # # Save the blurred heatmaps
# # for i in range(heatmaps.shape[0]):
# # tmp_htm = norm_heatmaps_pad_blur[i].copy()
# # tmp_htm = (tmp_htm - tmp_htm.min()) / (tmp_htm.max() - tmp_htm.min())
# # tmp_htm = (tmp_htm*255).astype(np.uint8)
# # tmp_htm = cv2.cvtColor(tmp_htm, cv2.COLOR_GRAY2BGR)
# # tmp_htm = cv2.applyColorMap(tmp_htm, cv2.COLORMAP_JET)
# # tmp_htm2 = norm_heatmaps_pad[i].copy()
# # tmp_htm2 = (tmp_htm2 - tmp_htm2.min()) / (tmp_htm2.max() - tmp_htm2.min())
# # tmp_htm2 = (tmp_htm2*255).astype(np.uint8)
# # tmp_htm2 = cv2.cvtColor(tmp_htm2, cv2.COLOR_GRAY2BGR)
# # tmp_htm2 = cv2.applyColorMap(tmp_htm2, cv2.COLORMAP_JET)
# # tmp_htm = cv2.addWeighted(tmp_htm, 0.5, tmp_htm2, 0.5, 0)
# # cv2.imwrite(f'heatmaps_blurred_{i}.png', tmp_htm)
# # norm_heatmaps_pad = np.pad(norm_heatmaps, ((0, 0), (x_pad, x_pad), (y_pad, y_pad)), mode='edge')
# y_idx, x_idx = np.indices(norm_heatmaps_pad_blur.shape[1:])
# # breakpoint()
# x_locs = np.sum(norm_heatmaps_pad_blur * x_idx, axis=(1, 2)) - x_pad
# y_locs = np.sum(norm_heatmaps_pad_blur * y_idx, axis=(1, 2)) - y_pad
# # mean_idx = np.argmax(heatmaps_flatten, axis=1)
# # x_locs, y_locs = np.unravel_index(mean_idx, shape=(H, W))
# # locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
# # breakpoint()
# # vals = heatmaps_flatten[np.arange(heatmaps_flatten.shape[0]), mean_idx]
# # locs[vals <= 0.] = -1
# # mean_idx = np.argmax(norm_heatmaps, axis=1)
# # y_locs, x_locs = np.unravel_index(
# # mean_idx, shape=(H, W))
# locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
# # vals = np.amax(heatmaps_flatten, axis=1)
x_locs_int = np.round(x_locs).astype(int)
x_locs_int = np.clip(x_locs_int, 0, W-1)
y_locs_int = np.round(y_locs).astype(int)
y_locs_int = np.clip(y_locs_int, 0, H-1)
vals = heatmaps_flatten[np.arange(B), np.arange(K), y_locs_int, x_locs_int]
# breakpoint()
# locs[vals <= 0.] = -1
# print(mean_idx)
# print(x_locs)
# print(y_locs)
# print(locs)
heatmaps_covolved = heatmaps_covolved.reshape(B, K, H, W)
if B > 1:
locs = locs.reshape(B, K, 2)
vals = vals.reshape(B, K)
heatmaps_covolved = heatmaps_covolved.reshape(B, K, H, W)
else:
locs = locs.reshape(K, 2)
vals = vals.reshape(K)
heatmaps_covolved = heatmaps_covolved.reshape(K, H, W)
if return_heatmap:
return locs, vals, heatmaps_covolved
else:
return locs, vals
def _get_subpixel_maximums(heatmaps, locs):
# Extract integer peak locations
x_locs = locs[:, 0].astype(np.int32)
y_locs = locs[:, 1].astype(np.int32)
# Ensure we are not near the boundaries (avoid boundary issues)
valid_mask = (x_locs > 0) & (x_locs < heatmaps.shape[2] - 1) & \
(y_locs > 0) & (y_locs < heatmaps.shape[1] - 1)
# Initialize the output array with the integer locations
subpixel_locs = locs.copy()
if np.any(valid_mask):
# Extract valid locations
x_locs_valid = x_locs[valid_mask]
y_locs_valid = y_locs[valid_mask]
# Compute gradients (dx, dy) and second derivatives (dxx, dyy)
dx = (heatmaps[valid_mask, y_locs_valid, x_locs_valid + 1] -
heatmaps[valid_mask, y_locs_valid, x_locs_valid - 1]) / 2.0
dy = (heatmaps[valid_mask, y_locs_valid + 1, x_locs_valid] -
heatmaps[valid_mask, y_locs_valid - 1, x_locs_valid]) / 2.0
dxx = heatmaps[valid_mask, y_locs_valid, x_locs_valid + 1] + \
heatmaps[valid_mask, y_locs_valid, x_locs_valid - 1] - \
2 * heatmaps[valid_mask, y_locs_valid, x_locs_valid]
dyy = heatmaps[valid_mask, y_locs_valid + 1, x_locs_valid] + \
heatmaps[valid_mask, y_locs_valid - 1, x_locs_valid] - \
2 * heatmaps[valid_mask, y_locs_valid, x_locs_valid]
# Avoid division by zero by setting a minimum threshold for the second derivatives
dxx = np.where(dxx != 0, dxx, 1e-6)
dyy = np.where(dyy != 0, dyy, 1e-6)
# Calculate the sub-pixel shift
subpixel_x_shift = -dx / dxx
subpixel_y_shift = -dy / dyy
# Update subpixel locations for valid indices
subpixel_locs[valid_mask, 0] += subpixel_x_shift
subpixel_locs[valid_mask, 1] += subpixel_y_shift
return subpixel_locs
|