Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,370 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import List, Optional, Tuple, Union
import numpy as np
from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec
@KEYPOINT_CODECS.register_module()
class VideoPoseLifting(BaseKeypointCodec):
r"""Generate keypoint coordinates for pose lifter.
Note:
- instance number: N
- keypoint number: K
- keypoint dimension: D
- pose-lifitng target dimension: C
Args:
num_keypoints (int): The number of keypoints in the dataset.
zero_center: Whether to zero-center the target around root. Default:
``True``.
root_index (Union[int, List]): Root keypoint index in the pose.
Default: 0.
remove_root (bool): If true, remove the root keypoint from the pose.
Default: ``False``.
save_index (bool): If true, store the root position separated from the
original pose, only takes effect if ``remove_root`` is ``True``.
Default: ``False``.
reshape_keypoints (bool): If true, reshape the keypoints into shape
(-1, N). Default: ``True``.
concat_vis (bool): If true, concat the visibility item of keypoints.
Default: ``False``.
normalize_camera (bool): Whether to normalize camera intrinsics.
Default: ``False``.
"""
auxiliary_encode_keys = {
'lifting_target', 'lifting_target_visible', 'camera_param'
}
instance_mapping_table = dict(
lifting_target='lifting_target',
lifting_target_visible='lifting_target_visible',
)
label_mapping_table = dict(
trajectory_weights='trajectory_weights',
lifting_target_label='lifting_target_label',
lifting_target_weight='lifting_target_weight')
def __init__(self,
num_keypoints: int,
zero_center: bool = True,
root_index: Union[int, List] = 0,
remove_root: bool = False,
save_index: bool = False,
reshape_keypoints: bool = True,
concat_vis: bool = False,
normalize_camera: bool = False):
super().__init__()
self.num_keypoints = num_keypoints
self.zero_center = zero_center
if isinstance(root_index, int):
root_index = [root_index]
self.root_index = root_index
self.remove_root = remove_root
self.save_index = save_index
self.reshape_keypoints = reshape_keypoints
self.concat_vis = concat_vis
self.normalize_camera = normalize_camera
def encode(self,
keypoints: np.ndarray,
keypoints_visible: Optional[np.ndarray] = None,
lifting_target: Optional[np.ndarray] = None,
lifting_target_visible: Optional[np.ndarray] = None,
camera_param: Optional[dict] = None) -> dict:
"""Encoding keypoints from input image space to normalized space.
Args:
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D).
keypoints_visible (np.ndarray, optional): Keypoint visibilities in
shape (N, K).
lifting_target (np.ndarray, optional): 3d target coordinate in
shape (T, K, C).
lifting_target_visible (np.ndarray, optional): Target coordinate in
shape (T, K, ).
camera_param (dict, optional): The camera parameter dictionary.
Returns:
encoded (dict): Contains the following items:
- keypoint_labels (np.ndarray): The processed keypoints in
shape like (N, K, D) or (K * D, N).
- keypoint_labels_visible (np.ndarray): The processed
keypoints' weights in shape (N, K, ) or (N-1, K, ).
- lifting_target_label: The processed target coordinate in
shape (K, C) or (K-1, C).
- lifting_target_weight (np.ndarray): The target weights in
shape (K, ) or (K-1, ).
- trajectory_weights (np.ndarray): The trajectory weights in
shape (K, ).
In addition, there are some optional items it may contain:
- target_root (np.ndarray): The root coordinate of target in
shape (C, ). Exists if ``zero_center`` is ``True``.
- target_root_removed (bool): Indicate whether the root of
pose-lifitng target is removed. Exists if
``remove_root`` is ``True``.
- target_root_index (int): An integer indicating the index of
root. Exists if ``remove_root`` and ``save_index``
are ``True``.
- camera_param (dict): The updated camera parameter dictionary.
Exists if ``normalize_camera`` is ``True``.
"""
if keypoints_visible is None:
keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)
if lifting_target is None:
lifting_target = [keypoints[0]]
# set initial value for `lifting_target_weight`
# and `trajectory_weights`
if lifting_target_visible is None:
lifting_target_visible = np.ones(
lifting_target.shape[:-1], dtype=np.float32)
lifting_target_weight = lifting_target_visible
trajectory_weights = (1 / lifting_target[:, 2])
else:
valid = lifting_target_visible > 0.5
lifting_target_weight = np.where(valid, 1., 0.).astype(np.float32)
trajectory_weights = lifting_target_weight
if camera_param is None:
camera_param = dict()
encoded = dict()
lifting_target_label = lifting_target.copy()
# Zero-center the target pose around a given root keypoint
if self.zero_center:
assert (lifting_target.ndim >= 2 and
lifting_target.shape[-2] > max(self.root_index)), \
f'Got invalid joint shape {lifting_target.shape}'
root = np.mean(lifting_target[..., self.root_index, :], axis=-2)
lifting_target_label -= root[..., np.newaxis, :]
encoded['target_root'] = root
if self.remove_root and len(self.root_index) == 1:
root_index = self.root_index[0]
lifting_target_label = np.delete(
lifting_target_label, root_index, axis=-2)
lifting_target_visible = np.delete(
lifting_target_visible, root_index, axis=-2)
assert lifting_target_weight.ndim in {
2, 3
}, (f'Got invalid lifting target weights shape '
f'{lifting_target_weight.shape}')
axis_to_remove = -2 if lifting_target_weight.ndim == 3 else -1
lifting_target_weight = np.delete(
lifting_target_weight, root_index, axis=axis_to_remove)
# Add a flag to avoid latter transforms that rely on the root
# joint or the original joint index
encoded['target_root_removed'] = True
# Save the root index for restoring the global pose
if self.save_index:
encoded['target_root_index'] = root_index
# Normalize the 2D keypoint coordinate with image width and height
_camera_param = deepcopy(camera_param)
assert 'w' in _camera_param and 'h' in _camera_param, (
'Camera parameter `w` and `h` should be provided.')
center = np.array([0.5 * _camera_param['w'], 0.5 * _camera_param['h']],
dtype=np.float32)
scale = np.array(0.5 * _camera_param['w'], dtype=np.float32)
keypoint_labels = (keypoints - center) / scale
assert keypoint_labels.ndim in {
2, 3
}, (f'Got invalid keypoint labels shape {keypoint_labels.shape}')
if keypoint_labels.ndim == 2:
keypoint_labels = keypoint_labels[None, ...]
if self.normalize_camera:
assert 'f' in _camera_param and 'c' in _camera_param, (
'Camera parameter `f` and `c` should be provided.')
_camera_param['f'] = _camera_param['f'] / scale
_camera_param['c'] = (_camera_param['c'] - center[:, None]) / scale
encoded['camera_param'] = _camera_param
if self.concat_vis:
keypoints_visible_ = keypoints_visible
if keypoints_visible.ndim == 2:
keypoints_visible_ = keypoints_visible[..., None]
keypoint_labels = np.concatenate(
(keypoint_labels, keypoints_visible_), axis=2)
if self.reshape_keypoints:
N = keypoint_labels.shape[0]
keypoint_labels = keypoint_labels.transpose(1, 2, 0).reshape(-1, N)
encoded['keypoint_labels'] = keypoint_labels
encoded['keypoints_visible'] = keypoints_visible
encoded['lifting_target_label'] = lifting_target_label
encoded['lifting_target_weight'] = lifting_target_weight
encoded['trajectory_weights'] = trajectory_weights
return encoded
def decode(self,
encoded: np.ndarray,
target_root: Optional[np.ndarray] = None
) -> Tuple[np.ndarray, np.ndarray]:
"""Decode keypoint coordinates from normalized space to input image
space.
Args:
encoded (np.ndarray): Coordinates in shape (N, K, C).
target_root (np.ndarray, optional): The pose-lifitng target root
coordinate. Default: ``None``.
Returns:
keypoints (np.ndarray): Decoded coordinates in shape (N, K, C).
scores (np.ndarray): The keypoint scores in shape (N, K).
"""
keypoints = encoded.copy()
if target_root is not None and target_root.size > 0:
keypoints = keypoints + target_root
if self.remove_root and len(self.root_index) == 1:
keypoints = np.insert(
keypoints, self.root_index, target_root, axis=1)
scores = np.ones(keypoints.shape[:-1], dtype=np.float32)
return keypoints, scores
|