File size: 10,370 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Copyright (c) OpenMMLab. All rights reserved.

from copy import deepcopy
from typing import List, Optional, Tuple, Union

import numpy as np

from mmpose.registry import KEYPOINT_CODECS
from .base import BaseKeypointCodec


@KEYPOINT_CODECS.register_module()
class VideoPoseLifting(BaseKeypointCodec):
    r"""Generate keypoint coordinates for pose lifter.

    Note:

        - instance number: N
        - keypoint number: K
        - keypoint dimension: D
        - pose-lifitng target dimension: C

    Args:
        num_keypoints (int): The number of keypoints in the dataset.
        zero_center: Whether to zero-center the target around root. Default:
            ``True``.
        root_index (Union[int, List]): Root keypoint index in the pose.
            Default: 0.
        remove_root (bool): If true, remove the root keypoint from the pose.
            Default: ``False``.
        save_index (bool): If true, store the root position separated from the
            original pose, only takes effect if ``remove_root`` is ``True``.
            Default: ``False``.
        reshape_keypoints (bool): If true, reshape the keypoints into shape
            (-1, N). Default: ``True``.
        concat_vis (bool): If true, concat the visibility item of keypoints.
            Default: ``False``.
        normalize_camera (bool): Whether to normalize camera intrinsics.
            Default: ``False``.
    """

    auxiliary_encode_keys = {
        'lifting_target', 'lifting_target_visible', 'camera_param'
    }

    instance_mapping_table = dict(
        lifting_target='lifting_target',
        lifting_target_visible='lifting_target_visible',
    )
    label_mapping_table = dict(
        trajectory_weights='trajectory_weights',
        lifting_target_label='lifting_target_label',
        lifting_target_weight='lifting_target_weight')

    def __init__(self,
                 num_keypoints: int,
                 zero_center: bool = True,
                 root_index: Union[int, List] = 0,
                 remove_root: bool = False,
                 save_index: bool = False,
                 reshape_keypoints: bool = True,
                 concat_vis: bool = False,
                 normalize_camera: bool = False):
        super().__init__()

        self.num_keypoints = num_keypoints
        self.zero_center = zero_center
        if isinstance(root_index, int):
            root_index = [root_index]
        self.root_index = root_index
        self.remove_root = remove_root
        self.save_index = save_index
        self.reshape_keypoints = reshape_keypoints
        self.concat_vis = concat_vis
        self.normalize_camera = normalize_camera

    def encode(self,
               keypoints: np.ndarray,
               keypoints_visible: Optional[np.ndarray] = None,
               lifting_target: Optional[np.ndarray] = None,
               lifting_target_visible: Optional[np.ndarray] = None,
               camera_param: Optional[dict] = None) -> dict:
        """Encoding keypoints from input image space to normalized space.

        Args:
            keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D).
            keypoints_visible (np.ndarray, optional): Keypoint visibilities in
                shape (N, K).
            lifting_target (np.ndarray, optional): 3d target coordinate in
                shape (T, K, C).
            lifting_target_visible (np.ndarray, optional): Target coordinate in
                shape (T, K, ).
            camera_param (dict, optional): The camera parameter dictionary.

        Returns:
            encoded (dict): Contains the following items:

                - keypoint_labels (np.ndarray): The processed keypoints in
                  shape like (N, K, D) or (K * D, N).
                - keypoint_labels_visible (np.ndarray): The processed
                  keypoints' weights in shape (N, K, ) or (N-1, K, ).
                - lifting_target_label: The processed target coordinate in
                  shape (K, C) or (K-1, C).
                - lifting_target_weight (np.ndarray): The target weights in
                  shape (K, ) or (K-1, ).
                - trajectory_weights (np.ndarray): The trajectory weights in
                  shape (K, ).

                In addition, there are some optional items it may contain:

                - target_root (np.ndarray): The root coordinate of target in
                  shape (C, ). Exists if ``zero_center`` is ``True``.
                - target_root_removed (bool): Indicate whether the root of
                  pose-lifitng target is removed. Exists if
                  ``remove_root`` is ``True``.
                - target_root_index (int): An integer indicating the index of
                  root. Exists if ``remove_root`` and ``save_index``
                  are ``True``.
                - camera_param (dict): The updated camera parameter dictionary.
                  Exists if ``normalize_camera`` is ``True``.
        """
        if keypoints_visible is None:
            keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32)

        if lifting_target is None:
            lifting_target = [keypoints[0]]

        # set initial value for `lifting_target_weight`
        # and `trajectory_weights`
        if lifting_target_visible is None:
            lifting_target_visible = np.ones(
                lifting_target.shape[:-1], dtype=np.float32)
            lifting_target_weight = lifting_target_visible
            trajectory_weights = (1 / lifting_target[:, 2])
        else:
            valid = lifting_target_visible > 0.5
            lifting_target_weight = np.where(valid, 1., 0.).astype(np.float32)
            trajectory_weights = lifting_target_weight

        if camera_param is None:
            camera_param = dict()

        encoded = dict()

        lifting_target_label = lifting_target.copy()
        # Zero-center the target pose around a given root keypoint
        if self.zero_center:
            assert (lifting_target.ndim >= 2 and
                    lifting_target.shape[-2] > max(self.root_index)), \
                f'Got invalid joint shape {lifting_target.shape}'

            root = np.mean(lifting_target[..., self.root_index, :], axis=-2)
            lifting_target_label -= root[..., np.newaxis, :]
            encoded['target_root'] = root

            if self.remove_root and len(self.root_index) == 1:
                root_index = self.root_index[0]
                lifting_target_label = np.delete(
                    lifting_target_label, root_index, axis=-2)
                lifting_target_visible = np.delete(
                    lifting_target_visible, root_index, axis=-2)
                assert lifting_target_weight.ndim in {
                    2, 3
                }, (f'Got invalid lifting target weights shape '
                    f'{lifting_target_weight.shape}')

                axis_to_remove = -2 if lifting_target_weight.ndim == 3 else -1
                lifting_target_weight = np.delete(
                    lifting_target_weight, root_index, axis=axis_to_remove)
                # Add a flag to avoid latter transforms that rely on the root
                # joint or the original joint index
                encoded['target_root_removed'] = True

                # Save the root index for restoring the global pose
                if self.save_index:
                    encoded['target_root_index'] = root_index

        # Normalize the 2D keypoint coordinate with image width and height
        _camera_param = deepcopy(camera_param)
        assert 'w' in _camera_param and 'h' in _camera_param, (
            'Camera parameter `w` and `h` should be provided.')

        center = np.array([0.5 * _camera_param['w'], 0.5 * _camera_param['h']],
                          dtype=np.float32)
        scale = np.array(0.5 * _camera_param['w'], dtype=np.float32)

        keypoint_labels = (keypoints - center) / scale

        assert keypoint_labels.ndim in {
            2, 3
        }, (f'Got invalid keypoint labels shape {keypoint_labels.shape}')
        if keypoint_labels.ndim == 2:
            keypoint_labels = keypoint_labels[None, ...]

        if self.normalize_camera:
            assert 'f' in _camera_param and 'c' in _camera_param, (
                'Camera parameter `f` and `c` should be provided.')
            _camera_param['f'] = _camera_param['f'] / scale
            _camera_param['c'] = (_camera_param['c'] - center[:, None]) / scale
            encoded['camera_param'] = _camera_param

        if self.concat_vis:
            keypoints_visible_ = keypoints_visible
            if keypoints_visible.ndim == 2:
                keypoints_visible_ = keypoints_visible[..., None]
            keypoint_labels = np.concatenate(
                (keypoint_labels, keypoints_visible_), axis=2)

        if self.reshape_keypoints:
            N = keypoint_labels.shape[0]
            keypoint_labels = keypoint_labels.transpose(1, 2, 0).reshape(-1, N)

        encoded['keypoint_labels'] = keypoint_labels
        encoded['keypoints_visible'] = keypoints_visible
        encoded['lifting_target_label'] = lifting_target_label
        encoded['lifting_target_weight'] = lifting_target_weight
        encoded['trajectory_weights'] = trajectory_weights

        return encoded

    def decode(self,
               encoded: np.ndarray,
               target_root: Optional[np.ndarray] = None
               ) -> Tuple[np.ndarray, np.ndarray]:
        """Decode keypoint coordinates from normalized space to input image
        space.

        Args:
            encoded (np.ndarray): Coordinates in shape (N, K, C).
            target_root (np.ndarray, optional): The pose-lifitng target root
                coordinate. Default: ``None``.

        Returns:
            keypoints (np.ndarray): Decoded coordinates in shape (N, K, C).
            scores (np.ndarray): The keypoint scores in shape (N, K).
        """
        keypoints = encoded.copy()

        if target_root is not None and target_root.size > 0:
            keypoints = keypoints + target_root
            if self.remove_root and len(self.root_index) == 1:
                keypoints = np.insert(
                    keypoints, self.root_index, target_root, axis=1)
        scores = np.ones(keypoints.shape[:-1], dtype=np.float32)

        return keypoints, scores