Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,518 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
_base_ = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/schedules/schedule_1x.py',
'../_base_/default_runtime.py',
# '../_base_/datasets/dsdl.py'
]
# model setting
model = dict(roi_head=dict(bbox_head=dict(num_classes=20)))
# dsdl dataset settings
# please visit our platform [OpenDataLab](https://opendatalab.com/)
# to downloaded dsdl dataset.
dataset_type = 'DSDLDetDataset'
data_root_07 = 'data/VOC07-det'
data_root_12 = 'data/VOC12-det'
img_prefix = 'original'
train_ann = 'dsdl/set-train/train.yaml'
val_ann = 'dsdl/set-val/val.yaml'
test_ann = 'dsdl/set-test/test.yaml'
backend_args = None
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1000, 600), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='Resize', scale=(1000, 600), keep_ratio=True),
# If you don't have a gt annotation, delete the pipeline
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'instances'))
]
specific_key_path = dict(ignore_flag='./objects/*/difficult', )
train_dataloader = dict(
dataset=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type='ConcatDataset',
datasets=[
dict(
type=dataset_type,
specific_key_path=specific_key_path,
data_root=data_root_07,
ann_file=train_ann,
data_prefix=dict(img_path=img_prefix),
filter_cfg=dict(
filter_empty_gt=True, min_size=32, bbox_min_size=32),
pipeline=train_pipeline),
dict(
type=dataset_type,
specific_key_path=specific_key_path,
data_root=data_root_07,
ann_file=val_ann,
data_prefix=dict(img_path=img_prefix),
filter_cfg=dict(
filter_empty_gt=True, min_size=32, bbox_min_size=32),
pipeline=train_pipeline),
dict(
type=dataset_type,
specific_key_path=specific_key_path,
data_root=data_root_12,
ann_file=train_ann,
data_prefix=dict(img_path=img_prefix),
filter_cfg=dict(
filter_empty_gt=True, min_size=32, bbox_min_size=32),
pipeline=train_pipeline),
dict(
type=dataset_type,
specific_key_path=specific_key_path,
data_root=data_root_12,
ann_file=val_ann,
data_prefix=dict(img_path=img_prefix),
filter_cfg=dict(
filter_empty_gt=True, min_size=32, bbox_min_size=32),
pipeline=train_pipeline),
])))
val_dataloader = dict(
dataset=dict(
type=dataset_type,
specific_key_path=specific_key_path,
data_root=data_root_07,
ann_file=test_ann,
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='CocoMetric', metric='bbox')
# val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points')
test_evaluator = val_evaluator
# training schedule, voc dataset is repeated 3 times, in
# `_base_/datasets/voc0712.py`, so the actual epoch = 4 * 3 = 12
max_epochs = 4
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning rate
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[3],
gamma=0.1)
]
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
|