File size: 7,474 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) OpenMMLab. All rights reserved.

from copy import deepcopy
from typing import Any, Callable, List, Optional, Tuple, Union, Dict

import numpy as np
from mmengine.dataset import BaseDataset
from mmengine.registry import build_from_cfg

from mmpose.registry import DATASETS
from .datasets.utils import parse_pose_metainfo


@DATASETS.register_module()
class CombinedDataset(BaseDataset):
    """A wrapper of combined dataset.

    Args:
        metainfo (dict): The meta information of combined dataset.
        datasets (list): The configs of datasets to be combined.
        pipeline (list, optional): Processing pipeline. Defaults to [].
        sample_ratio_factor (list, optional): A list of sampling ratio
            factors for each dataset. Defaults to None
    """

    def __init__(self,
                 metainfo: dict,
                 datasets: list,
                 pipeline: List[Union[dict, Callable]] = [],
                 sample_ratio_factor: Optional[List[float]] = None,
                 dataset_ratio_factor: Optional[List[float]] = None,
                 keypoints_mapping: Optional[List[Dict]] = None,
                 **kwargs):

        self.datasets = []
        self.resample = sample_ratio_factor is not None

        self.keypoints_mapping = keypoints_mapping
        self.num_joints = None
        if self.keypoints_mapping is not None:
            self.num_joints = 0
            for mapping in self.keypoints_mapping:
                self.num_joints = max(self.num_joints, max(mapping.values()) +1)


        for cfg in datasets:
            dataset = build_from_cfg(cfg, DATASETS)
            self.datasets.append(dataset)

        # For each dataset, select its random subset based on the sample_ratio_factor
        if dataset_ratio_factor is not None:
            for i, dataset in enumerate(self.datasets):
                dataset_len = len(dataset)
                random_subset = np.random.choice(
                    dataset_len,
                    int(dataset_len * dataset_ratio_factor[i]),
                    replace=False,
                )
                self.datasets[i] = dataset.get_subset(
                    random_subset.flatten().tolist(),
                )

        self._lens = [len(dataset) for dataset in self.datasets]
        if self.resample:
            assert len(sample_ratio_factor) == len(datasets), f'the length ' \
                f'of `sample_ratio_factor` {len(sample_ratio_factor)} does ' \
                f'not match the length of `datasets` {len(datasets)}'
            assert min(sample_ratio_factor) >= 0.0, 'the ratio values in ' \
                '`sample_ratio_factor` should not be negative.'
            self._lens_ori = self._lens
            self._lens = [
                round(l * sample_ratio_factor[i])
                for i, l in enumerate(self._lens_ori)
            ]

        self._len = sum(self._lens)

        super(CombinedDataset, self).__init__(pipeline=pipeline, **kwargs)
        self._metainfo = parse_pose_metainfo(metainfo)

        print("CombinedDataset initialized\n\tlen: {}\n\tlens: {}".format(self._len, self._lens))

    @property
    def metainfo(self):
        return deepcopy(self._metainfo)

    def __len__(self):
        return self._len

    def _get_subset_index(self, index: int) -> Tuple[int, int]:
        """Given a data sample's global index, return the index of the sub-
        dataset the data sample belongs to, and the local index within that
        sub-dataset.

        Args:
            index (int): The global data sample index

        Returns:
            tuple[int, int]:
            - subset_index (int): The index of the sub-dataset
            - local_index (int): The index of the data sample within
                the sub-dataset
        """
        if index >= len(self) or index < -len(self):
            raise ValueError(
                f'index({index}) is out of bounds for dataset with '
                f'length({len(self)}).')

        if index < 0:
            index = index + len(self)

        subset_index = 0
        while index >= self._lens[subset_index]:
            index -= self._lens[subset_index]
            subset_index += 1

        if self.resample:
            gap = (self._lens_ori[subset_index] -
                   1e-4) / self._lens[subset_index]
            index = round(gap * index + np.random.rand() * gap - 0.5)

        return subset_index, index

    def prepare_data(self, idx: int) -> Any:
        """Get data processed by ``self.pipeline``.The source dataset is
        depending on the index.

        Args:
            idx (int): The index of ``data_info``.

        Returns:
            Any: Depends on ``self.pipeline``.
        """

        data_info = self.get_data_info(idx)

        # the assignment of 'dataset' should not be performed within the
        # `get_data_info` function. Otherwise, it can lead to the mixed
        # data augmentation process getting stuck.
        data_info['dataset'] = self

        return self.pipeline(data_info)

    def get_data_info(self, idx: int) -> dict:
        """Get annotation by index.

        Args:
            idx (int): Global index of ``CombinedDataset``.
        Returns:
            dict: The idx-th annotation of the datasets.
        """
        subset_idx, sample_idx = self._get_subset_index(idx)
        # Get data sample processed by ``subset.pipeline``
        data_info = self.datasets[subset_idx][sample_idx]

        if 'dataset' in data_info:
            data_info.pop('dataset')

        # Add metainfo items that are required in the pipeline and the model
        metainfo_keys = [
            'upper_body_ids', 'lower_body_ids', 'flip_pairs',
            'dataset_keypoint_weights', 'flip_indices'
        ]

        for key in metainfo_keys:
            data_info[key] = deepcopy(self._metainfo[key])

        # Map keypoints based on the dataset keypoint mapping
        if self.keypoints_mapping is not None:
            mapping = self.keypoints_mapping[subset_idx]
            
            keypoints = data_info['keypoints']
            N, K, D = keypoints.shape
            keypoints_visibility = data_info.get('keypoints_visibility', np.zeros((N, K)))
            keypoints_visible = data_info.get('keypoints_visible', np.zeros((N, K)))
            
            mapped_keypoints = np.zeros((N, self.num_joints, 2))
            mapped_visibility = np.zeros((N, self.num_joints))
            mapped_visible = np.zeros((N, self.num_joints))

            map_idx = np.stack(
                [list(mapping.keys()), list(mapping.values())], axis=1)
            mapped_keypoints[:, map_idx[:, 1], :] = data_info['keypoints'][:, map_idx[:, 0], :]
            mapped_visibility[:, map_idx[:, 1]] = keypoints_visibility[:, map_idx[:, 0]]
            mapped_visible[:, map_idx[:, 1]] = keypoints_visible[:, map_idx[:, 0]]

            data_info['keypoints'] = mapped_keypoints.reshape((N, self.num_joints, 2) )
            data_info['keypoints_visibility'] = mapped_visibility.reshape((N, self.num_joints))
            data_info['keypoints_visible'] = mapped_visible.reshape((N, self.num_joints))

        # print('data_info', data_info)

        return data_info

    def full_init(self):
        """Fully initialize all sub datasets."""

        if self._fully_initialized:
            return

        for dataset in self.datasets:
            dataset.full_init()
        self._fully_initialized = True