Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,344 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 |
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from typing import Dict, List, Optional, Sequence, Tuple, Union
import cv2
import numpy as np
import xtcocotools.mask as cocomask
from mmcv.image import imflip_, imresize
from mmcv.image.geometric import imrescale
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from scipy.stats import truncnorm
from mmpose.registry import TRANSFORMS
from mmpose.structures.bbox import (bbox_clip_border, bbox_corner2xyxy,
bbox_xyxy2corner, get_pers_warp_matrix,
get_udp_warp_matrix, get_warp_matrix)
from mmpose.structures.keypoint import keypoint_clip_border
@TRANSFORMS.register_module()
class BottomupGetHeatmapMask(BaseTransform):
"""Generate the mask of valid regions from the segmentation annotation.
Required Keys:
- img_shape
- invalid_segs (optional)
- warp_mat (optional)
- flip (optional)
- flip_direction (optional)
- heatmaps (optional)
Added Keys:
- heatmap_mask
"""
def __init__(self, get_invalid: bool = False):
super().__init__()
self.get_invalid = get_invalid
def _segs_to_mask(self, segs: list, img_shape: Tuple[int,
int]) -> np.ndarray:
"""Calculate mask from object segmentations.
Args:
segs (List): The object segmentation annotations in COCO format
img_shape (Tuple): The image shape in (h, w)
Returns:
np.ndarray: The binary object mask in size (h, w), where the
object pixels are 1 and background pixels are 0
"""
# RLE is a simple yet efficient format for storing binary masks.
# details can be found at `COCO tools <https://github.com/
# cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/
# mask.py>`__
rles = []
for seg in segs:
if isinstance(seg, (tuple, list)):
rle = cocomask.frPyObjects(seg, img_shape[0], img_shape[1])
if isinstance(rle, list):
# For non-crowded objects (e.g. human with no visible
# keypoints), the results is a list of rles
rles.extend(rle)
else:
# For crowded objects, the result is a single rle
rles.append(rle)
if rles:
mask = cocomask.decode(cocomask.merge(rles))
else:
mask = np.zeros(img_shape, dtype=np.uint8)
return mask
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupGetHeatmapMask` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
invalid_segs = results.get('invalid_segs', [])
img_shape = results['img_shape'] # (img_h, img_w)
input_size = results['input_size']
mask = self._segs_to_mask(invalid_segs, img_shape)
if not self.get_invalid:
# Calculate the mask of the valid region by negating the
# segmentation mask of invalid objects
mask = np.logical_not(mask)
# Apply an affine transform to the mask if the image has been
# transformed
if 'warp_mat' in results:
warp_mat = results['warp_mat']
mask = mask.astype(np.float32)
mask = cv2.warpAffine(
mask, warp_mat, input_size, flags=cv2.INTER_LINEAR)
# Flip the mask if the image has been flipped
if results.get('flip', False):
flip_dir = results['flip_direction']
if flip_dir is not None:
mask = imflip_(mask, flip_dir)
# Resize the mask to the same size of heatmaps
if 'heatmaps' in results:
heatmaps = results['heatmaps']
if isinstance(heatmaps, list):
# Multi-level heatmaps
heatmap_mask = []
for hm in results['heatmaps']:
h, w = hm.shape[1:3]
_mask = imresize(
mask, size=(w, h), interpolation='bilinear')
heatmap_mask.append(_mask)
else:
h, w = heatmaps.shape[1:3]
heatmap_mask = imresize(
mask, size=(w, h), interpolation='bilinear')
else:
heatmap_mask = mask
# Binarize the mask(s)
if isinstance(heatmap_mask, list):
results['heatmap_mask'] = [hm > 0.5 for hm in heatmap_mask]
else:
results['heatmap_mask'] = heatmap_mask > 0.5
return results
@TRANSFORMS.register_module()
class BottomupRandomAffine(BaseTransform):
r"""Randomly shift, resize and rotate the image.
Required Keys:
- img
- img_shape
- keypoints (optional)
Modified Keys:
- img
- keypoints (optional)
Added Keys:
- input_size
- warp_mat
Args:
input_size (Tuple[int, int]): The input image size of the model in
[w, h]
shift_factor (float): Randomly shift the image in range
:math:`[-dx, dx]` and :math:`[-dy, dy]` in X and Y directions,
where :math:`dx(y) = img_w(h) \cdot shift_factor` in pixels.
Defaults to 0.2
shift_prob (float): Probability of applying random shift. Defaults to
1.0
scale_factor (Tuple[float, float]): Randomly resize the image in range
:math:`[scale_factor[0], scale_factor[1]]`. Defaults to
(0.75, 1.5)
scale_prob (float): Probability of applying random resizing. Defaults
to 1.0
scale_type (str): wrt ``long`` or ``short`` length of the image.
Defaults to ``short``
rotate_factor (float): Randomly rotate the bbox in
:math:`[-rotate_factor, rotate_factor]` in degrees. Defaults
to 40.0
use_udp (bool): Whether use unbiased data processing. See
`UDP (CVPR 2020)`_ for details. Defaults to ``False``
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
def __init__(self,
input_size: Optional[Tuple[int, int]] = None,
shift_factor: float = 0.2,
shift_prob: float = 1.,
scale_factor: Tuple[float, float] = (0.75, 1.5),
scale_prob: float = 1.,
scale_type: str = 'short',
rotate_factor: float = 30.,
rotate_prob: float = 1,
shear_factor: float = 2.0,
shear_prob: float = 1.0,
use_udp: bool = False,
pad_val: Union[float, Tuple[float]] = 0,
border: Tuple[int, int] = (0, 0),
distribution='trunc_norm',
transform_mode='affine',
bbox_keep_corner: bool = True,
clip_border: bool = False) -> None:
super().__init__()
assert transform_mode in ('affine', 'affine_udp', 'perspective'), \
f'the argument transform_mode should be either \'affine\', ' \
f'\'affine_udp\' or \'perspective\', but got \'{transform_mode}\''
self.input_size = input_size
self.shift_factor = shift_factor
self.shift_prob = shift_prob
self.scale_factor = scale_factor
self.scale_prob = scale_prob
self.scale_type = scale_type
self.rotate_factor = rotate_factor
self.rotate_prob = rotate_prob
self.shear_factor = shear_factor
self.shear_prob = shear_prob
self.use_udp = use_udp
self.distribution = distribution
self.clip_border = clip_border
self.bbox_keep_corner = bbox_keep_corner
self.transform_mode = transform_mode
if isinstance(pad_val, (int, float)):
pad_val = (pad_val, pad_val, pad_val)
if 'affine' in transform_mode:
self._transform = partial(
cv2.warpAffine, flags=cv2.INTER_LINEAR, borderValue=pad_val)
else:
self._transform = partial(cv2.warpPerspective, borderValue=pad_val)
def _random(self,
low: float = -1.,
high: float = 1.,
size: tuple = ()) -> np.ndarray:
if self.distribution == 'trunc_norm':
"""Sample from a truncated normal distribution."""
return truncnorm.rvs(low, high, size=size).astype(np.float32)
elif self.distribution == 'uniform':
x = np.random.rand(*size)
return x * (high - low) + low
else:
raise ValueError(f'the argument `distribution` should be either'
f'\'trunc_norn\' or \'uniform\', but got '
f'{self.distribution}.')
def _fix_aspect_ratio(self, scale: np.ndarray, aspect_ratio: float):
"""Extend the scale to match the given aspect ratio.
Args:
scale (np.ndarray): The image scale (w, h) in shape (2, )
aspect_ratio (float): The ratio of ``w/h``
Returns:
np.ndarray: The reshaped image scale in (2, )
"""
w, h = scale
if w > h * aspect_ratio:
if self.scale_type == 'long':
_w, _h = w, w / aspect_ratio
elif self.scale_type == 'short':
_w, _h = h * aspect_ratio, h
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
else:
if self.scale_type == 'short':
_w, _h = w, w / aspect_ratio
elif self.scale_type == 'long':
_w, _h = h * aspect_ratio, h
else:
raise ValueError(f'Unknown scale type: {self.scale_type}')
return np.array([_w, _h], dtype=scale.dtype)
@cache_randomness
def _get_transform_params(self) -> Tuple:
"""Get random transform parameters.
Returns:
tuple:
- offset (np.ndarray): Image offset rate in shape (2, )
- scale (np.ndarray): Image scaling rate factor in shape (1, )
- rotate (np.ndarray): Image rotation degree in shape (1, )
"""
# get offset
if np.random.rand() < self.shift_prob:
offset = self._random(size=(2, )) * self.shift_factor
else:
offset = np.zeros((2, ), dtype=np.float32)
# get scale
if np.random.rand() < self.scale_prob:
scale_min, scale_max = self.scale_factor
scale = scale_min + (scale_max - scale_min) * (
self._random(size=(1, )) + 1) / 2
else:
scale = np.ones(1, dtype=np.float32)
# get rotation
if np.random.rand() < self.rotate_prob:
rotate = self._random() * self.rotate_factor
else:
rotate = 0
# get shear
if 'perspective' in self.transform_mode and np.random.rand(
) < self.shear_prob:
shear = self._random(size=(2, )) * self.shear_factor
else:
shear = np.zeros((2, ), dtype=np.float32)
return offset, scale, rotate, shear
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupRandomAffine` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
img_h, img_w = results['img_shape'][:2]
w, h = self.input_size
offset_rate, scale_rate, rotate, shear = self._get_transform_params()
if 'affine' in self.transform_mode:
offset = offset_rate * [img_w, img_h]
scale = scale_rate * [img_w, img_h]
# adjust the scale to match the target aspect ratio
scale = self._fix_aspect_ratio(scale, aspect_ratio=w / h)
if self.transform_mode == 'affine_udp':
center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2],
dtype=np.float32)
warp_mat = get_udp_warp_matrix(
center=center + offset,
scale=scale,
rot=rotate,
output_size=(w, h))
else:
center = np.array([img_w / 2, img_h / 2], dtype=np.float32)
warp_mat = get_warp_matrix(
center=center + offset,
scale=scale,
rot=rotate,
output_size=(w, h))
else:
offset = offset_rate * [w, h]
center = np.array([w / 2, h / 2], dtype=np.float32)
warp_mat = get_pers_warp_matrix(
center=center,
translate=offset,
scale=scale_rate[0],
rot=rotate,
shear=shear)
# warp image and keypoints
results['img'] = self._transform(results['img'], warp_mat,
(int(w), int(h)))
if 'keypoints' in results:
# Only transform (x, y) coordinates
kpts = cv2.transform(results['keypoints'], warp_mat)
if kpts.shape[-1] == 3:
kpts = kpts[..., :2] / kpts[..., 2:3]
results['keypoints'] = kpts
if self.clip_border:
results['keypoints'], results[
'keypoints_visible'] = keypoint_clip_border(
results['keypoints'], results['keypoints_visible'],
(w, h))
if 'bbox' in results:
bbox = bbox_xyxy2corner(results['bbox'])
bbox = cv2.transform(bbox, warp_mat)
if bbox.shape[-1] == 3:
bbox = bbox[..., :2] / bbox[..., 2:3]
if not self.bbox_keep_corner:
bbox = bbox_corner2xyxy(bbox)
if self.clip_border:
bbox = bbox_clip_border(bbox, (w, h))
results['bbox'] = bbox
if 'area' in results:
warp_mat_for_area = warp_mat
if warp_mat.shape[0] == 2:
aux_row = np.array([[0.0, 0.0, 1.0]], dtype=warp_mat.dtype)
warp_mat_for_area = np.concatenate((warp_mat, aux_row))
results['area'] *= np.linalg.det(warp_mat_for_area)
results['input_size'] = self.input_size
results['warp_mat'] = warp_mat
return results
@TRANSFORMS.register_module()
class BottomupResize(BaseTransform):
"""Resize the image to the input size of the model. Optionally, the image
can be resized to multiple sizes to build a image pyramid for multi-scale
inference.
Required Keys:
- img
- ori_shape
Modified Keys:
- img
- img_shape
Added Keys:
- input_size
- warp_mat
- aug_scale
Args:
input_size (Tuple[int, int]): The input size of the model in [w, h].
Note that the actually size of the resized image will be affected
by ``resize_mode`` and ``size_factor``, thus may not exactly equals
to the ``input_size``
aug_scales (List[float], optional): The extra input scales for
multi-scale testing. If given, the input image will be resized
to different scales to build a image pyramid. And heatmaps from
all scales will be aggregated to make final prediction. Defaults
to ``None``
size_factor (int): The actual input size will be ceiled to
a multiple of the `size_factor` value at both sides.
Defaults to 16
resize_mode (str): The method to resize the image to the input size.
Options are:
- ``'fit'``: The image will be resized according to the
relatively longer side with the aspect ratio kept. The
resized image will entirely fits into the range of the
input size
- ``'expand'``: The image will be resized according to the
relatively shorter side with the aspect ratio kept. The
resized image will exceed the given input size at the
longer side
use_udp (bool): Whether use unbiased data processing. See
`UDP (CVPR 2020)`_ for details. Defaults to ``False``
.. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524
"""
def __init__(self,
input_size: Tuple[int, int],
aug_scales: Optional[List[float]] = None,
size_factor: int = 32,
resize_mode: str = 'fit',
pad_val: tuple = (0, 0, 0),
use_udp: bool = False):
super().__init__()
self.input_size = input_size
self.aug_scales = aug_scales
self.resize_mode = resize_mode
self.size_factor = size_factor
self.use_udp = use_udp
self.pad_val = pad_val
@staticmethod
def _ceil_to_multiple(size: Tuple[int, int], base: int):
"""Ceil the given size (tuple of [w, h]) to a multiple of the base."""
return tuple(int(np.ceil(s / base) * base) for s in size)
def _get_input_size(self, img_size: Tuple[int, int],
input_size: Tuple[int, int]) -> Tuple:
"""Calculate the actual input size (which the original image will be
resized to) and the padded input size (which the resized image will be
padded to, or which is the size of the model input).
Args:
img_size (Tuple[int, int]): The original image size in [w, h]
input_size (Tuple[int, int]): The expected input size in [w, h]
Returns:
tuple:
- actual_input_size (Tuple[int, int]): The target size to resize
the image
- padded_input_size (Tuple[int, int]): The target size to generate
the model input which will contain the resized image
"""
img_w, img_h = img_size
ratio = img_w / img_h
if self.resize_mode == 'fit':
padded_input_size = self._ceil_to_multiple(input_size,
self.size_factor)
if padded_input_size != input_size:
raise ValueError(
'When ``resize_mode==\'fit\', the input size (height and'
' width) should be mulitples of the size_factor('
f'{self.size_factor}) at all scales. Got invalid input '
f'size {input_size}.')
pad_w, pad_h = padded_input_size
rsz_w = min(pad_w, pad_h * ratio)
rsz_h = min(pad_h, pad_w / ratio)
actual_input_size = (rsz_w, rsz_h)
elif self.resize_mode == 'expand':
_padded_input_size = self._ceil_to_multiple(
input_size, self.size_factor)
pad_w, pad_h = _padded_input_size
rsz_w = max(pad_w, pad_h * ratio)
rsz_h = max(pad_h, pad_w / ratio)
actual_input_size = (rsz_w, rsz_h)
padded_input_size = self._ceil_to_multiple(actual_input_size,
self.size_factor)
else:
raise ValueError(f'Invalid resize mode {self.resize_mode}')
return actual_input_size, padded_input_size
def transform(self, results: Dict) -> Optional[dict]:
"""The transform function of :class:`BottomupResize` to perform
photometric distortion on images.
See ``transform()`` method of :class:`BaseTransform` for details.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict: Result dict with images distorted.
"""
img = results['img']
img_h, img_w = results['ori_shape']
w, h = self.input_size
input_sizes = [(w, h)]
if self.aug_scales:
input_sizes += [(int(w * s), int(h * s)) for s in self.aug_scales]
imgs = []
for i, (_w, _h) in enumerate(input_sizes):
actual_input_size, padded_input_size = self._get_input_size(
img_size=(img_w, img_h), input_size=(_w, _h))
if self.use_udp:
center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2],
dtype=np.float32)
scale = np.array([img_w, img_h], dtype=np.float32)
warp_mat = get_udp_warp_matrix(
center=center,
scale=scale,
rot=0,
output_size=actual_input_size)
else:
center = np.array([img_w / 2, img_h / 2], dtype=np.float32)
scale = np.array([
img_w * padded_input_size[0] / actual_input_size[0],
img_h * padded_input_size[1] / actual_input_size[1]
],
dtype=np.float32)
warp_mat = get_warp_matrix(
center=center,
scale=scale,
rot=0,
output_size=padded_input_size)
_img = cv2.warpAffine(
img,
warp_mat,
padded_input_size,
flags=cv2.INTER_LINEAR,
borderValue=self.pad_val)
imgs.append(_img)
# Store the transform information w.r.t. the main input size
if i == 0:
results['img_shape'] = padded_input_size[::-1]
results['input_center'] = center
results['input_scale'] = scale
results['input_size'] = padded_input_size
if self.aug_scales:
results['img'] = imgs
results['aug_scales'] = self.aug_scales
else:
results['img'] = imgs[0]
results['aug_scale'] = None
return results
@TRANSFORMS.register_module()
class BottomupRandomCrop(BaseTransform):
"""Random crop the image & bboxes & masks.
The absolute ``crop_size`` is sampled based on ``crop_type`` and
``image_size``, then the cropped results are generated.
Required Keys:
- img
- keypoints
- bbox (optional)
- masks (BitmapMasks | PolygonMasks) (optional)
Modified Keys:
- img
- img_shape
- keypoints
- keypoints_visible
- num_keypoints
- bbox (optional)
- bbox_score (optional)
- id (optional)
- category_id (optional)
- raw_ann_info (optional)
- iscrowd (optional)
- segmentation (optional)
- masks (optional)
Added Keys:
- warp_mat
Args:
crop_size (tuple): The relative ratio or absolute pixels of
(width, height).
crop_type (str, optional): One of "relative_range", "relative",
"absolute", "absolute_range". "relative" randomly crops
(h * crop_size[0], w * crop_size[1]) part from an input of size
(h, w). "relative_range" uniformly samples relative crop size from
range [crop_size[0], 1] and [crop_size[1], 1] for height and width
respectively. "absolute" crops from an input with absolute size
(crop_size[0], crop_size[1]). "absolute_range" uniformly samples
crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w
in range [crop_size[0], min(w, crop_size[1])].
Defaults to "absolute".
allow_negative_crop (bool, optional): Whether to allow a crop that does
not contain any bbox area. Defaults to False.
recompute_bbox (bool, optional): Whether to re-compute the boxes based
on cropped instance masks. Defaults to False.
bbox_clip_border (bool, optional): Whether clip the objects outside
the border of the image. Defaults to True.
Note:
- If the image is smaller than the absolute crop size, return the
original image.
- If the crop does not contain any gt-bbox region and
``allow_negative_crop`` is set to False, skip this image.
"""
def __init__(self,
crop_size: tuple,
crop_type: str = 'absolute',
allow_negative_crop: bool = False,
recompute_bbox: bool = False,
bbox_clip_border: bool = True) -> None:
if crop_type not in [
'relative_range', 'relative', 'absolute', 'absolute_range'
]:
raise ValueError(f'Invalid crop_type {crop_type}.')
if crop_type in ['absolute', 'absolute_range']:
assert crop_size[0] > 0 and crop_size[1] > 0
assert isinstance(crop_size[0], int) and isinstance(
crop_size[1], int)
if crop_type == 'absolute_range':
assert crop_size[0] <= crop_size[1]
else:
assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1
self.crop_size = crop_size
self.crop_type = crop_type
self.allow_negative_crop = allow_negative_crop
self.bbox_clip_border = bbox_clip_border
self.recompute_bbox = recompute_bbox
def _crop_data(self, results: dict, crop_size: Tuple[int, int],
allow_negative_crop: bool) -> Union[dict, None]:
"""Function to randomly crop images, bounding boxes, masks, semantic
segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
crop_size (Tuple[int, int]): Expected absolute size after
cropping, (h, w).
allow_negative_crop (bool): Whether to allow a crop that does not
contain any bbox area.
Returns:
results (Union[dict, None]): Randomly cropped results, 'img_shape'
key in result dict is updated according to crop size. None will
be returned when there is no valid bbox after cropping.
"""
assert crop_size[0] > 0 and crop_size[1] > 0
img = results['img']
margin_h = max(img.shape[0] - crop_size[0], 0)
margin_w = max(img.shape[1] - crop_size[1], 0)
offset_h, offset_w = self._rand_offset((margin_h, margin_w))
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
# Record the warp matrix for the RandomCrop
warp_mat = np.array([[1, 0, -offset_w], [0, 1, -offset_h], [0, 0, 1]],
dtype=np.float32)
if results.get('warp_mat', None) is None:
results['warp_mat'] = warp_mat
else:
results['warp_mat'] = warp_mat @ results['warp_mat']
# crop the image
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
img_shape = img.shape
results['img'] = img
results['img_shape'] = img_shape[:2]
# crop bboxes accordingly and clip to the image boundary
if results.get('bbox', None) is not None:
distances = (-offset_w, -offset_h)
bboxes = results['bbox']
bboxes = bboxes + np.tile(np.asarray(distances), 2)
if self.bbox_clip_border:
bboxes[..., 0::2] = bboxes[..., 0::2].clip(0, img_shape[1])
bboxes[..., 1::2] = bboxes[..., 1::2].clip(0, img_shape[0])
valid_inds = (bboxes[..., 0] < img_shape[1]) & \
(bboxes[..., 1] < img_shape[0]) & \
(bboxes[..., 2] > 0) & \
(bboxes[..., 3] > 0)
# If the crop does not contain any gt-bbox area and
# allow_negative_crop is False, skip this image.
if (not valid_inds.any() and not allow_negative_crop):
return None
results['bbox'] = bboxes[valid_inds]
meta_keys = [
'bbox_score', 'id', 'category_id', 'raw_ann_info', 'iscrowd'
]
for key in meta_keys:
if results.get(key):
if isinstance(results[key], list):
results[key] = np.asarray(
results[key])[valid_inds].tolist()
else:
results[key] = results[key][valid_inds]
if results.get('keypoints', None) is not None:
keypoints = results['keypoints']
distances = np.asarray(distances).reshape(1, 1, 2)
keypoints = keypoints + distances
if self.bbox_clip_border:
keypoints_outside_x = keypoints[:, :, 0] < 0
keypoints_outside_y = keypoints[:, :, 1] < 0
keypoints_outside_width = keypoints[:, :, 0] > img_shape[1]
keypoints_outside_height = keypoints[:, :,
1] > img_shape[0]
kpt_outside = np.logical_or.reduce(
(keypoints_outside_x, keypoints_outside_y,
keypoints_outside_width, keypoints_outside_height))
results['keypoints_visible'][kpt_outside] *= 0
keypoints[:, :, 0] = keypoints[:, :, 0].clip(0, img_shape[1])
keypoints[:, :, 1] = keypoints[:, :, 1].clip(0, img_shape[0])
results['keypoints'] = keypoints[valid_inds]
results['keypoints_visible'] = results['keypoints_visible'][
valid_inds]
if results.get('segmentation', None) is not None:
results['segmentation'] = results['segmentation'][
crop_y1:crop_y2, crop_x1:crop_x2]
if results.get('masks', None) is not None:
results['masks'] = results['masks'][valid_inds.nonzero(
)[0]].crop(np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
if self.recompute_bbox:
results['bbox'] = results['masks'].get_bboxes(
type(results['bbox']))
return results
@cache_randomness
def _rand_offset(self, margin: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generate crop offset.
Args:
margin (Tuple[int, int]): The upper bound for the offset generated
randomly.
Returns:
Tuple[int, int]: The random offset for the crop.
"""
margin_h, margin_w = margin
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
return offset_h, offset_w
@cache_randomness
def _get_crop_size(self, image_size: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generates the absolute crop size based on `crop_type` and
`image_size`.
Args:
image_size (Tuple[int, int]): (h, w).
Returns:
crop_size (Tuple[int, int]): (crop_h, crop_w) in absolute pixels.
"""
h, w = image_size
if self.crop_type == 'absolute':
return min(self.crop_size[1], h), min(self.crop_size[0], w)
elif self.crop_type == 'absolute_range':
crop_h = np.random.randint(
min(h, self.crop_size[0]),
min(h, self.crop_size[1]) + 1)
crop_w = np.random.randint(
min(w, self.crop_size[0]),
min(w, self.crop_size[1]) + 1)
return crop_h, crop_w
elif self.crop_type == 'relative':
crop_w, crop_h = self.crop_size
return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
else:
# 'relative_range'
crop_size = np.asarray(self.crop_size, dtype=np.float32)
crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size)
return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
def transform(self, results: dict) -> Union[dict, None]:
"""Transform function to randomly crop images, bounding boxes, masks,
semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
results (Union[dict, None]): Randomly cropped results, 'img_shape'
key in result dict is updated according to crop size. None will
be returned when there is no valid bbox after cropping.
"""
image_size = results['img'].shape[:2]
crop_size = self._get_crop_size(image_size)
results = self._crop_data(results, crop_size, self.allow_negative_crop)
return results
@TRANSFORMS.register_module()
class BottomupRandomChoiceResize(BaseTransform):
"""Resize images & bbox & mask from a list of multiple scales.
This transform resizes the input image to some scale. Bboxes and masks are
then resized with the same scale factor. Resize scale will be randomly
selected from ``scales``.
How to choose the target scale to resize the image will follow the rules
below:
- if `scale` is a list of tuple, the target scale is sampled from the list
uniformally.
- if `scale` is a tuple, the target scale will be set to the tuple.
Required Keys:
- img
- bbox
- keypoints
Modified Keys:
- img
- img_shape
- bbox
- keypoints
Added Keys:
- scale
- scale_factor
- scale_idx
Args:
scales (Union[list, Tuple]): Images scales for resizing.
**resize_kwargs: Other keyword arguments for the ``resize_type``.
"""
def __init__(
self,
scales: Sequence[Union[int, Tuple]],
keep_ratio: bool = False,
clip_object_border: bool = True,
backend: str = 'cv2',
**resize_kwargs,
) -> None:
super().__init__()
if isinstance(scales, list):
self.scales = scales
else:
self.scales = [scales]
self.keep_ratio = keep_ratio
self.clip_object_border = clip_object_border
self.backend = backend
@cache_randomness
def _random_select(self) -> Tuple[int, int]:
"""Randomly select an scale from given candidates.
Returns:
(tuple, int): Returns a tuple ``(scale, scale_dix)``,
where ``scale`` is the selected image scale and
``scale_idx`` is the selected index in the given candidates.
"""
scale_idx = np.random.randint(len(self.scales))
scale = self.scales[scale_idx]
return scale, scale_idx
def _resize_img(self, results: dict) -> None:
"""Resize images with ``self.scale``."""
if self.keep_ratio:
img, scale_factor = imrescale(
results['img'],
self.scale,
interpolation='bilinear',
return_scale=True,
backend=self.backend)
# the w_scale and h_scale has minor difference
# a real fix should be done in the mmcv.imrescale in the future
new_h, new_w = img.shape[:2]
h, w = results['img'].shape[:2]
w_scale = new_w / w
h_scale = new_h / h
else:
img, w_scale, h_scale = imresize(
results['img'],
self.scale,
interpolation='bilinear',
return_scale=True,
backend=self.backend)
results['img'] = img
results['img_shape'] = img.shape[:2]
results['scale_factor'] = (w_scale, h_scale)
results['input_size'] = img.shape[:2]
w, h = results['ori_shape']
center = np.array([w / 2, h / 2], dtype=np.float32)
scale = np.array([w, h], dtype=np.float32)
results['input_center'] = center
results['input_scale'] = scale
def _resize_bboxes(self, results: dict) -> None:
"""Resize bounding boxes with ``self.scale``."""
if results.get('bbox', None) is not None:
bboxes = results['bbox'] * np.tile(
np.array(results['scale_factor']), 2)
if self.clip_object_border:
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0,
results['img_shape'][1])
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0,
results['img_shape'][0])
results['bbox'] = bboxes
def _resize_keypoints(self, results: dict) -> None:
"""Resize keypoints with ``self.scale``."""
if results.get('keypoints', None) is not None:
keypoints = results['keypoints']
keypoints[:, :, :2] = keypoints[:, :, :2] * np.array(
results['scale_factor'])
if self.clip_object_border:
keypoints[:, :, 0] = np.clip(keypoints[:, :, 0], 0,
results['img_shape'][1])
keypoints[:, :, 1] = np.clip(keypoints[:, :, 1], 0,
results['img_shape'][0])
results['keypoints'] = keypoints
def transform(self, results: dict) -> dict:
"""Apply resize transforms on results from a list of scales.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: Resized results, 'img', 'bbox',
'keypoints', 'scale', 'scale_factor', 'img_shape',
and 'keep_ratio' keys are updated in result dict.
"""
target_scale, scale_idx = self._random_select()
self.scale = target_scale
self._resize_img(results)
self._resize_bboxes(results)
self._resize_keypoints(results)
results['scale_idx'] = scale_idx
return results
|