Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,234 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from abc import ABCMeta
from collections import defaultdict
from typing import Optional, Sequence, Tuple
import mmcv
import numpy as np
from mmcv.transforms import BaseTransform
from mmengine.dataset.base_dataset import Compose
from numpy import random
from mmpose.registry import TRANSFORMS
from mmpose.structures import (bbox_clip_border, flip_bbox, flip_keypoints,
keypoint_clip_border)
class MixImageTransform(BaseTransform, metaclass=ABCMeta):
"""Abstract base class for mixup-style image data augmentation.
Args:
pre_transform (Optional[Sequence[str]]): A sequence of transform
to be applied before mixup. Defaults to None.
prob (float): Probability of applying the mixup transformation.
Defaults to 1.0.
"""
def __init__(self,
pre_transform: Optional[Sequence[str]] = None,
prob: float = 1.0):
self.prob = prob
if pre_transform is None:
self.pre_transform = None
else:
self.pre_transform = Compose(pre_transform)
def transform(self, results: dict) -> dict:
"""Transform the input data dictionary using mixup-style augmentation.
Args:
results (dict): A dictionary containing input data.
"""
if random.uniform(0, 1) < self.prob:
dataset = results.pop('dataset', None)
results['mixed_data_list'] = self._get_mixed_data_list(dataset)
results = self.apply_mix(results)
if 'mixed_data_list' in results:
results.pop('mixed_data_list')
results['dataset'] = dataset
return results
def _get_mixed_data_list(self, dataset):
"""Get a list of mixed data samples from the dataset.
Args:
dataset: The dataset from which to sample the mixed data.
Returns:
List[dict]: A list of dictionaries containing mixed data samples.
"""
indexes = [
random.randint(0, len(dataset)) for _ in range(self.num_aux_image)
]
mixed_data_list = [
copy.deepcopy(dataset.get_data_info(index)) for index in indexes
]
if self.pre_transform is not None:
for i, data in enumerate(mixed_data_list):
data.update({'dataset': dataset})
_results = self.pre_transform(data)
_results.pop('dataset')
mixed_data_list[i] = _results
return mixed_data_list
@TRANSFORMS.register_module()
class Mosaic(MixImageTransform):
"""Mosaic augmentation. This transformation takes four input images and
combines them into a single output image using the mosaic technique. The
resulting image is composed of parts from each of the four sub-images. The
mosaic transform steps are as follows:
1. Choose the mosaic center as the intersection of the four images.
2. Select the top-left image according to the index and randomly sample
three more images from the custom dataset.
3. If an image is larger than the mosaic patch, it will be cropped.
.. code:: text
mosaic transform
center_x
+------------------------------+
| pad | |
| +-----------+ pad |
| | | |
| | image1 +-----------+
| | | |
| | | image2 |
center_y |----+-+-----------+-----------+
| | cropped | |
|pad | image3 | image4 |
| | | |
+----|-------------+-----------+
| |
+-------------+
Required Keys:
- img
- bbox (optional)
- bbox_score (optional)
- category_id (optional)
- keypoints (optional)
- keypoints_visible (optional)
- area (optional)
Modified Keys:
- img
- bbox (optional)
- bbox_score (optional)
- category_id (optional)
- keypoints (optional)
- keypoints_visible (optional)
- area (optional)
Args:
img_scale (Sequence[int]): Image size after mosaic pipeline of single
image. The shape order should be (width, height).
Defaults to (640, 640).
center_range (Sequence[float]): Center ratio range of mosaic
output. Defaults to (0.5, 1.5).
pad_val (int): Pad value. Defaults to 114.
pre_transform (Optional[Sequence[str]]): A sequence of transform
to be applied before mixup. Defaults to None.
prob (float): Probability of applying the mixup transformation.
Defaults to 1.0.
"""
num_aux_image = 3
def __init__(
self,
img_scale: Tuple[int, int] = (640, 640),
center_range: Tuple[float, float] = (0.5, 1.5),
pad_val: float = 114.0,
pre_transform: Sequence[dict] = None,
prob: float = 1.0,
):
super().__init__(pre_transform=pre_transform, prob=prob)
self.img_scale = img_scale
self.center_range = center_range
self.pad_val = pad_val
def apply_mix(self, results: dict) -> dict:
"""Apply mosaic augmentation to the input data."""
assert 'mixed_data_list' in results
mixed_data_list = results.pop('mixed_data_list')
assert len(mixed_data_list) == self.num_aux_image
img, annos = self._create_mosaic_image(results, mixed_data_list)
bboxes = annos['bboxes']
kpts = annos['keypoints']
kpts_vis = annos['keypoints_visible']
bboxes = bbox_clip_border(bboxes, (2 * self.img_scale[0],
2 * self.img_scale[1]))
kpts, kpts_vis = keypoint_clip_border(kpts, kpts_vis,
(2 * self.img_scale[0],
2 * self.img_scale[1]))
results['img'] = img
results['img_shape'] = img.shape
results['bbox'] = bboxes
results['category_id'] = annos['category_id']
results['bbox_score'] = annos['bbox_scores']
results['keypoints'] = kpts
results['keypoints_visible'] = kpts_vis
results['area'] = annos['area']
return results
def _create_mosaic_image(self, results, mixed_data_list):
"""Create the mosaic image and corresponding annotations by combining
four input images."""
# init mosaic image
img_scale_w, img_scale_h = self.img_scale
mosaic_img = np.full((int(img_scale_h * 2), int(img_scale_w * 2), 3),
self.pad_val,
dtype=results['img'].dtype)
# calculate mosaic center
center = (int(random.uniform(*self.center_range) * img_scale_w),
int(random.uniform(*self.center_range) * img_scale_h))
annos = defaultdict(list)
locs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
for loc, data in zip(locs, (results, *mixed_data_list)):
# process image
img = data['img']
h, w = img.shape[:2]
scale_ratio = min(img_scale_h / h, img_scale_w / w)
img = mmcv.imresize(img,
(int(w * scale_ratio), int(h * scale_ratio)))
# paste
paste_coord, crop_coord = self._mosaic_combine(
loc, center, img.shape[:2][::-1])
x1_p, y1_p, x2_p, y2_p = paste_coord
x1_c, y1_c, x2_c, y2_c = crop_coord
# crop and paste image
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img[y1_c:y2_c, x1_c:x2_c]
padw = x1_p - x1_c
padh = y1_p - y1_c
# merge annotations
if 'bbox' in data:
bboxes = data['bbox']
# rescale & translate
bboxes *= scale_ratio
bboxes[..., ::2] += padw
bboxes[..., 1::2] += padh
annos['bboxes'].append(bboxes)
annos['bbox_scores'].append(data['bbox_score'])
annos['category_id'].append(data['category_id'])
if 'keypoints' in data:
kpts = data['keypoints']
# rescale & translate
kpts *= scale_ratio
kpts[..., 0] += padw
kpts[..., 1] += padh
annos['keypoints'].append(kpts)
annos['keypoints_visible'].append(data['keypoints_visible'])
if 'area' in data:
annos['area'].append(data['area'] * scale_ratio**2)
for key in annos:
annos[key] = np.concatenate(annos[key])
return mosaic_img, annos
def _mosaic_combine(
self, loc: str, center: Tuple[float, float], img_shape: Tuple[int, int]
) -> Tuple[Tuple[int, int, int, int], Tuple[int, int, int, int]]:
"""Determine the overall coordinates of the mosaic image and the
specific coordinates of the cropped sub-image."""
assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right')
x1, y1, x2, y2 = 0, 0, 0, 0
cx, cy = center
w, h = img_shape
if loc == 'top_left':
x1, y1, x2, y2 = max(cx - w, 0), max(cy - h, 0), cx, cy
crop_coord = w - (x2 - x1), h - (y2 - y1), w, h
elif loc == 'top_right':
x1, y1, x2, y2 = cx, max(cy - h, 0), min(cx + w,
self.img_scale[0] * 2), cy
crop_coord = 0, h - (y2 - y1), min(w, x2 - x1), h
elif loc == 'bottom_left':
x1, y1, x2, y2 = max(cx - w,
0), cy, cx, min(self.img_scale[1] * 2, cy + h)
crop_coord = w - (x2 - x1), 0, w, min(y2 - y1, h)
else:
x1, y1, x2, y2 = cx, cy, min(cx + w, self.img_scale[0] *
2), min(self.img_scale[1] * 2, cy + h)
crop_coord = 0, 0, min(w, x2 - x1), min(y2 - y1, h)
return (x1, y1, x2, y2), crop_coord
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'center_range={self.center_range}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class YOLOXMixUp(MixImageTransform):
"""MixUp data augmentation for YOLOX. This transform combines two images
through mixup to enhance the dataset's diversity.
Mixup Transform Steps:
1. A random image is chosen from the dataset and placed in the
top-left corner of the target image (after padding and resizing).
2. The target of the mixup transform is obtained by taking the
weighted average of the mixup image and the original image.
.. code:: text
mixup transform
+---------------+--------------+
| mixup image | |
| +--------|--------+ |
| | | | |
+---------------+ | |
| | | |
| | image | |
| | | |
| | | |
| +-----------------+ |
| pad |
+------------------------------+
Required Keys:
- img
- bbox (optional)
- bbox_score (optional)
- category_id (optional)
- keypoints (optional)
- keypoints_visible (optional)
- area (optional)
Modified Keys:
- img
- bbox (optional)
- bbox_score (optional)
- category_id (optional)
- keypoints (optional)
- keypoints_visible (optional)
- area (optional)
Args:
img_scale (Sequence[int]): Image output size after mixup pipeline.
The shape order should be (width, height). Defaults to (640, 640).
ratio_range (Sequence[float]): Scale ratio of mixup image.
Defaults to (0.5, 1.5).
flip_ratio (float): Horizontal flip ratio of mixup image.
Defaults to 0.5.
pad_val (int): Pad value. Defaults to 114.
pre_transform (Optional[Sequence[str]]): A sequence of transform
to be applied before mixup. Defaults to None.
prob (float): Probability of applying the mixup transformation.
Defaults to 1.0.
"""
num_aux_image = 1
def __init__(self,
img_scale: Tuple[int, int] = (640, 640),
ratio_range: Tuple[float, float] = (0.5, 1.5),
flip_ratio: float = 0.5,
pad_val: float = 114.0,
bbox_clip_border: bool = True,
pre_transform: Sequence[dict] = None,
prob: float = 1.0):
assert isinstance(img_scale, tuple)
super().__init__(pre_transform=pre_transform, prob=prob)
self.img_scale = img_scale
self.ratio_range = ratio_range
self.flip_ratio = flip_ratio
self.pad_val = pad_val
self.bbox_clip_border = bbox_clip_border
def apply_mix(self, results: dict) -> dict:
"""YOLOX MixUp transform function."""
assert 'mixed_data_list' in results
mixed_data_list = results.pop('mixed_data_list')
assert len(mixed_data_list) == self.num_aux_image
if mixed_data_list[0]['keypoints'].shape[0] == 0:
return results
img, annos = self._create_mixup_image(results, mixed_data_list)
bboxes = annos['bboxes']
kpts = annos['keypoints']
kpts_vis = annos['keypoints_visible']
h, w = img.shape[:2]
bboxes = bbox_clip_border(bboxes, (w, h))
kpts, kpts_vis = keypoint_clip_border(kpts, kpts_vis, (w, h))
results['img'] = img.astype(np.uint8)
results['img_shape'] = img.shape
results['bbox'] = bboxes
results['category_id'] = annos['category_id']
results['bbox_score'] = annos['bbox_scores']
results['keypoints'] = kpts
results['keypoints_visible'] = kpts_vis
results['area'] = annos['area']
return results
def _create_mixup_image(self, results, mixed_data_list):
"""Create the mixup image and corresponding annotations by combining
two input images."""
aux_results = mixed_data_list[0]
aux_img = aux_results['img']
# init mixup image
out_img = np.ones((self.img_scale[1], self.img_scale[0], 3),
dtype=aux_img.dtype) * self.pad_val
annos = defaultdict(list)
# Calculate scale ratio and resize aux_img
scale_ratio = min(self.img_scale[1] / aux_img.shape[0],
self.img_scale[0] / aux_img.shape[1])
aux_img = mmcv.imresize(aux_img, (int(aux_img.shape[1] * scale_ratio),
int(aux_img.shape[0] * scale_ratio)))
# Set the resized aux_img in the top-left of out_img
out_img[:aux_img.shape[0], :aux_img.shape[1]] = aux_img
# random rescale
jit_factor = random.uniform(*self.ratio_range)
scale_ratio *= jit_factor
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor),
int(out_img.shape[0] * jit_factor)))
# random flip
is_filp = random.uniform(0, 1) > self.flip_ratio
if is_filp:
out_img = out_img[:, ::-1, :]
# random crop
ori_img = results['img']
aux_h, aux_w = out_img.shape[:2]
h, w = ori_img.shape[:2]
padded_img = np.ones((max(aux_h, h), max(aux_w, w), 3)) * self.pad_val
padded_img = padded_img.astype(np.uint8)
padded_img[:aux_h, :aux_w] = out_img
dy = random.randint(0, max(0, padded_img.shape[0] - h) + 1)
dx = random.randint(0, max(0, padded_img.shape[1] - w) + 1)
padded_cropped_img = padded_img[dy:dy + h, dx:dx + w]
# mix up
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img
# merge annotations
# bboxes
bboxes = aux_results['bbox'].copy()
bboxes *= scale_ratio
bboxes = bbox_clip_border(bboxes, (aux_w, aux_h))
if is_filp:
bboxes = flip_bbox(bboxes, [aux_w, aux_h], 'xyxy')
bboxes[..., ::2] -= dx
bboxes[..., 1::2] -= dy
annos['bboxes'] = [results['bbox'], bboxes]
annos['bbox_scores'] = [
results['bbox_score'], aux_results['bbox_score']
]
annos['category_id'] = [
results['category_id'], aux_results['category_id']
]
# keypoints
kpts = aux_results['keypoints'] * scale_ratio
kpts, kpts_vis = keypoint_clip_border(kpts,
aux_results['keypoints_visible'],
(aux_w, aux_h))
if is_filp:
kpts, kpts_vis = flip_keypoints(kpts, kpts_vis, (aux_w, aux_h),
aux_results['flip_indices'])
kpts[..., 0] -= dx
kpts[..., 1] -= dy
annos['keypoints'] = [results['keypoints'], kpts]
annos['keypoints_visible'] = [results['keypoints_visible'], kpts_vis]
annos['area'] = [results['area'], aux_results['area'] * scale_ratio**2]
for key in annos:
annos[key] = np.concatenate(annos[key])
return mixup_img, annos
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'flip_ratio={self.flip_ratio}, '
repr_str += f'pad_val={self.pad_val})'
return repr_str
|