Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,512 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import os.path as osp
import tempfile
from collections import OrderedDict, defaultdict
from typing import Dict, Optional, Sequence
import traceback
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.fileio import dump, get_local_path, load
from mmengine.logging import MessageHub, MMLogger, print_log
from xtcocotools.coco import COCO
from xtcocotools.cocoeval import COCOeval
from mmpose.registry import METRICS
from mmpose.structures.bbox import bbox_xyxy2xywh
from mmpose.structures.keypoint import find_min_padding_exact, fix_bbox_aspect_ratio
from ..functional import (oks_nms, soft_oks_nms, transform_ann, transform_pred,
transform_sigmas)
import cv2
import os
import matplotlib.pyplot as plt
from matplotlib import rc
from xtcocotools.mask import _mask as maskUtils
@METRICS.register_module()
class CocoMetric(BaseMetric):
"""COCO pose estimation task evaluation metric.
Evaluate AR, AP, and mAP for keypoint detection tasks. Support COCO
dataset and other datasets in COCO format. Please refer to
`COCO keypoint evaluation <https://cocodataset.org/#keypoints-eval>`__
for more details.
Args:
ann_file (str, optional): Path to the coco format annotation file.
If not specified, ground truth annotations from the dataset will
be converted to coco format. Defaults to None
use_area (bool): Whether to use ``'area'`` message in the annotations.
If the ground truth annotations (e.g. CrowdPose, AIC) do not have
the field ``'area'``, please set ``use_area=False``.
Defaults to ``True``
iou_type (str): The same parameter as `iouType` in
:class:`xtcocotools.COCOeval`, which can be ``'keypoints'``, or
``'keypoints_crowd'`` (used in CrowdPose dataset).
Defaults to ``'keypoints'``
score_mode (str): The mode to score the prediction results which
should be one of the following options:
- ``'bbox'``: Take the score of bbox as the score of the
prediction results.
- ``'bbox_keypoint'``: Use keypoint score to rescore the
prediction results.
- ``'bbox_rle'``: Use rle_score to rescore the
prediction results.
Defaults to ``'bbox_keypoint'`
keypoint_score_thr (float): The threshold of keypoint score. The
keypoints with score lower than it will not be included to
rescore the prediction results. Valid only when ``score_mode`` is
``bbox_keypoint``. Defaults to ``0.2``
nms_mode (str): The mode to perform Non-Maximum Suppression (NMS),
which should be one of the following options:
- ``'oks_nms'``: Use Object Keypoint Similarity (OKS) to
perform NMS.
- ``'soft_oks_nms'``: Use Object Keypoint Similarity (OKS)
to perform soft NMS.
- ``'none'``: Do not perform NMS. Typically for bottomup mode
output.
Defaults to ``'oks_nms'`
nms_thr (float): The Object Keypoint Similarity (OKS) threshold
used in NMS when ``nms_mode`` is ``'oks_nms'`` or
``'soft_oks_nms'``. Will retain the prediction results with OKS
lower than ``nms_thr``. Defaults to ``0.9``
format_only (bool): Whether only format the output results without
doing quantitative evaluation. This is designed for the need of
test submission when the ground truth annotations are absent. If
set to ``True``, ``outfile_prefix`` should specify the path to
store the output results. Defaults to ``False``
pred_converter (dict, optional): Config dictionary for the prediction
converter. The dictionary has the same parameters as
'KeypointConverter'. Defaults to None.
gt_converter (dict, optional): Config dictionary for the ground truth
converter. The dictionary has the same parameters as
'KeypointConverter'. Defaults to None.
outfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., ``'a/b/prefix'``.
If not specified, a temp file will be created. Defaults to ``None``
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Defaults to ``'cpu'``
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Defaults to ``None``
"""
default_prefix: Optional[str] = 'coco'
def __init__(self,
ann_file: Optional[str] = None,
use_area: bool = True,
iou_type: str = 'keypoints',
score_mode: str = 'bbox_keypoint',
score_thresh_type: str = 'score',
keypoint_score_thr: float = 0.2,
nms_mode: str = 'oks_nms',
nms_thr: float = 0.9,
format_only: bool = False,
pred_converter: Dict = None,
gt_converter: Dict = None,
outfile_prefix: Optional[str] = None,
collect_device: str = 'cpu',
prefix: Optional[str] = None,
extended: list = [False],
match_by_bbox: list = [False],
ignore_border_points: list = [False],
ignore_stats: list = [],
padding: float = 1.25) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
self.ann_file = ann_file
# initialize coco helper with the annotation json file
# if ann_file is not specified, initialize with the converted dataset
if ann_file is not None:
with get_local_path(ann_file) as local_path:
self.coco = COCO(local_path)
else:
self.coco = None
self.use_area = use_area
self.iou_type = iou_type
allowed_score_modes = ['bbox', 'bbox_keypoint', 'bbox_rle', 'keypoint']
if score_mode not in allowed_score_modes:
raise ValueError(
"`score_mode` should be one of 'bbox', 'bbox_keypoint', "
f"'bbox_rle', but got {score_mode}")
self.score_mode = score_mode
self.keypoint_score_thr = keypoint_score_thr
if score_thresh_type not in ['score', 'prob']:
raise ValueError(
"'score_thresh_type' should be one of 'score' or 'prob'"
)
self.score_thresh_type = score_thresh_type
allowed_nms_modes = ['oks_nms', 'soft_oks_nms', 'none']
if nms_mode not in allowed_nms_modes:
raise ValueError(
"`nms_mode` should be one of 'oks_nms', 'soft_oks_nms', "
f"'none', but got {nms_mode}")
self.nms_mode = nms_mode
self.nms_thr = nms_thr
if format_only:
assert outfile_prefix is not None, '`outfile_prefix` can not be '\
'None when `format_only` is True, otherwise the result file '\
'will be saved to a temp directory which will be cleaned up '\
'in the end.'
elif ann_file is not None:
# do evaluation only if the ground truth annotations exist
assert 'annotations' in load(ann_file), \
'Ground truth annotations are required for evaluation '\
'when `format_only` is False.'
self.format_only = format_only
self.outfile_prefix = outfile_prefix
self.pred_converter = pred_converter
self.gt_converter = gt_converter
len_params = max(len(extended), len(match_by_bbox))
if len(extended) == 1 and len_params > 1:
extended = extended * len_params
if len(match_by_bbox) == 1 and len_params > 1:
match_by_bbox = match_by_bbox * len_params
assert len(extended) == len(match_by_bbox), \
'The length of `extended` and `match_by_bbox` should be the same.'
assert len(extended) >= 1, \
'The length of `extended` and `match_by_bbox` should be at least 1.'
self.extended = extended
self.match_by_bbox = match_by_bbox
self.ignore_border_points = ignore_border_points
self.ignore_stats = ignore_stats
self.prob_thr = -1
self.has_probability = True
self.padding = padding
self._compute_min_padding_in_coco()
@property
def dataset_meta(self) -> Optional[dict]:
"""Optional[dict]: Meta info of the dataset."""
return self._dataset_meta
@dataset_meta.setter
def dataset_meta(self, dataset_meta: dict) -> None:
"""Set the dataset meta info to the metric."""
if self.gt_converter is not None:
dataset_meta['sigmas'] = transform_sigmas(
dataset_meta['sigmas'], self.gt_converter['num_keypoints'],
self.gt_converter['mapping'])
dataset_meta['num_keypoints'] = len(dataset_meta['sigmas'])
self._dataset_meta = dataset_meta
if self.coco is None:
message = MessageHub.get_current_instance()
ann_file = message.get_info(
f"{dataset_meta['dataset_name']}_ann_file", None)
if ann_file is not None:
with get_local_path(ann_file) as local_path:
self.coco = COCO(local_path)
print_log(
f'CocoMetric for dataset '
f"{dataset_meta['dataset_name']} has successfully "
f'loaded the annotation file from {ann_file}', 'current')
def _compute_min_padding_in_coco(self):
"""Compute the minimum padding in COCO format."""
if self.coco is None:
return
for _, ann in self.coco.anns.items():
if 'pad_to_contain' in ann.keys():
continue
kpts = np.array(ann['keypoints']).reshape(-1, 3)
bbox = np.array(ann['bbox']).flatten()
min_padding = find_min_padding_exact(bbox, kpts)
ann['pad_to_contain'] = min_padding
return
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from
the model, each of which has the following keys:
- 'id': The id of the sample
- 'img_id': The image_id of the sample
- 'pred_instances': The prediction results of instance(s)
"""
self.results_len = len(self.results)
for data_sample in data_samples:
if 'pred_instances' not in data_sample:
raise ValueError(
'`pred_instances` are required to process the '
f'predictions results in {self.__class__.__name__}. ')
# keypoints.shape: [N, K, 2],
# N: number of instances, K: number of keypoints
# for topdown-style output, N is usually 1, while for
# bottomup-style output, N is the number of instances in the image
keypoints = data_sample['pred_instances']['keypoints']
N, K, _ = keypoints.shape
# [N, K], the scores for all keypoints of all instances
keypoint_scores = data_sample['pred_instances']['keypoint_scores']
assert keypoint_scores.shape == keypoints.shape[:2]
if 'keypoints_visible' in data_sample['pred_instances']:
keypoints_visible = data_sample['pred_instances']['keypoints_visible']
else:
keypoints_visible = keypoint_scores.copy()
if 'keypoints_probs' in data_sample['pred_instances']:
keypoints_probs = data_sample['pred_instances']['keypoints_probs']
# keypoints_probs = keypoint_scores.copy()
else:
self.has_probability = False
keypoints_probs = keypoint_scores.copy()
if 'keypoints_oks' in data_sample['pred_instances']:
keypoints_oks = data_sample['pred_instances']['keypoints_oks']
else:
keypoints_oks = keypoint_scores.copy()
if 'keypoints_error' in data_sample['pred_instances']:
keypoints_error = data_sample['pred_instances']['keypoints_error']
else:
keypoints_error = keypoint_scores.copy()
if K == 21:
# Translate 21 keypoints to 17 keypoints by ignoring the last 4 keypoints
keypoints = keypoints[:, :17, :]
keypoint_scores = keypoint_scores[:, :17]
keypoints_visible = keypoints_visible[:, :17]
keypoints_probs = keypoints_probs[:, :17]
keypoints_oks = keypoints_oks[:, :17]
keypoints_error = keypoints_error[:, :17]
elif K != 17:
raise ValueError('The number of keypoints should be 17 or 21, '
f'but got {K}.')
assert keypoints.shape[1] == 17, f'Number of keypoints should be 17 but got {keypoints.shape}'
assert keypoint_scores.shape[1] == 17, f'Number of keypoint scores should be 17 but got {keypoint_scores.shape}'
assert keypoints_visible.shape[1] == 17, f'Number of visible keypoints should be 17 but got {keypoints_visible.shape}'
assert keypoints_probs.shape[1] == 17, f'Number of keypoint probs should be 17 but got {keypoints_probs.shape}'
assert keypoints_oks.shape[1] == 17, f'Number of keypoint oks should be 17 but got {keypoints_oks.shape}'
assert keypoints_error.shape[1] == 17, f'Number of keypoint error should be 17 but got {keypoints_error.shape}'
assert heatmaps.shape[1] == 17, f'Number of heatmaps should be 17 but got {heatmaps.shape}'
# parse prediction results
pred = dict()
pred['id'] = data_sample['id']
pred['img_id'] = data_sample['img_id']
pred['keypoints'] = keypoints
pred['keypoint_scores'] = keypoint_scores
pred['keypoints_visible'] = keypoints_visible
pred['keypoint_probs'] = keypoints_probs
pred['keypoint_oks'] = keypoints_oks
pred['keypoint_error'] = keypoints_error
pred['category_id'] = data_sample.get('category_id', 1)
if 'bboxes' in data_sample['pred_instances']:
pred['bbox'] = bbox_xyxy2xywh(
data_sample['pred_instances']['bboxes'])
if 'bbox_scores' in data_sample['pred_instances']:
# some one-stage models will predict bboxes and scores
# together with keypoints
bbox_scores = data_sample['pred_instances']['bbox_scores']
elif ('bbox_scores' not in data_sample['gt_instances']
or len(data_sample['gt_instances']['bbox_scores']) !=
len(keypoints)):
# bottom-up models might output different number of
# instances from annotation
bbox_scores = np.ones(len(keypoints))
else:
# top-down models use detected bboxes, the scores of which
# are contained in the gt_instances
bbox_scores = data_sample['gt_instances']['bbox_scores']
pred['bbox_scores'] = bbox_scores
# get area information
if 'bbox_scales' in data_sample['gt_instances']:
pred['areas'] = np.prod(
data_sample['gt_instances']['bbox_scales'], axis=1)
# parse gt
gt = dict()
if self.coco is None:
gt['width'] = data_sample['ori_shape'][1]
gt['height'] = data_sample['ori_shape'][0]
gt['img_id'] = data_sample['img_id']
if self.iou_type == 'keypoints_crowd':
assert 'crowd_index' in data_sample, \
'`crowd_index` is required when `self.iou_type` is ' \
'`keypoints_crowd`'
gt['crowd_index'] = data_sample['crowd_index']
assert 'raw_ann_info' in data_sample, \
'The row ground truth annotations are required for ' \
'evaluation when `ann_file` is not provided'
anns = data_sample['raw_ann_info']
gt['raw_ann_info'] = anns if isinstance(anns, list) else [anns]
# add converted result to the results list
self.results.append((pred, gt))
processed_len = len(self.results) - self.results_len
if processed_len != len(data_samples):
print(f'Warning: {processed_len} samples are processed, ')
print(f'but {len(data_samples)} samples are provided.')
def gt_to_coco_json(self, gt_dicts: Sequence[dict],
outfile_prefix: str) -> str:
"""Convert ground truth to coco format json file.
Args:
gt_dicts (Sequence[dict]): Ground truth of the dataset. Each dict
contains the ground truth information about the data sample.
Required keys of the each `gt_dict` in `gt_dicts`:
- `img_id`: image id of the data sample
- `width`: original image width
- `height`: original image height
- `raw_ann_info`: the raw annotation information
Optional keys:
- `crowd_index`: measure the crowding level of an image,
defined in CrowdPose dataset
It is worth mentioning that, in order to compute `CocoMetric`,
there are some required keys in the `raw_ann_info`:
- `id`: the id to distinguish different annotations
- `image_id`: the image id of this annotation
- `category_id`: the category of the instance.
- `bbox`: the object bounding box
- `keypoints`: the keypoints cooridinates along with their
visibilities. Note that it need to be aligned
with the official COCO format, e.g., a list with length
N * 3, in which N is the number of keypoints. And each
triplet represent the [x, y, visible] of the keypoint.
- `iscrowd`: indicating whether the annotation is a crowd.
It is useful when matching the detection results to
the ground truth.
There are some optional keys as well:
- `area`: it is necessary when `self.use_area` is `True`
- `num_keypoints`: it is necessary when `self.iou_type`
is set as `keypoints_crowd`.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json file will be named
"somepath/xxx.gt.json".
Returns:
str: The filename of the json file.
"""
image_infos = []
annotations = []
img_ids = []
ann_ids = []
for gt_dict in gt_dicts:
# filter duplicate image_info
if gt_dict['img_id'] not in img_ids:
image_info = dict(
id=gt_dict['img_id'],
width=gt_dict['width'],
height=gt_dict['height'],
)
if self.iou_type == 'keypoints_crowd':
image_info['crowdIndex'] = gt_dict['crowd_index']
image_infos.append(image_info)
img_ids.append(gt_dict['img_id'])
# filter duplicate annotations
for ann in gt_dict['raw_ann_info']:
if ann is None:
# during evaluation on bottom-up datasets, some images
# do not have instance annotation
continue
annotation = dict(
id=ann['id'],
image_id=ann['image_id'],
category_id=ann['category_id'],
bbox=ann['bbox'],
keypoints=ann['keypoints'],
iscrowd=ann['iscrowd'],
)
if self.use_area:
assert 'area' in ann, \
'`area` is required when `self.use_area` is `True`'
annotation['area'] = ann['area']
if self.iou_type == 'keypoints_crowd':
assert 'num_keypoints' in ann, \
'`num_keypoints` is required when `self.iou_type` ' \
'is `keypoints_crowd`'
annotation['num_keypoints'] = ann['num_keypoints']
annotations.append(annotation)
ann_ids.append(ann['id'])
info = dict(
date_created=str(datetime.datetime.now()),
description='Coco json file converted by mmpose CocoMetric.')
coco_json = dict(
info=info,
images=image_infos,
categories=self.dataset_meta['CLASSES'],
licenses=None,
annotations=annotations,
)
converted_json_path = f'{outfile_prefix}.gt.json'
dump(coco_json, converted_json_path, sort_keys=True, indent=4)
return converted_json_path
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# split prediction and gt list
preds, gts = zip(*results)
tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'results')
else:
outfile_prefix = self.outfile_prefix
if self.coco is None:
# use converted gt json file to initialize coco helper
logger.info('Converting ground truth to coco format...')
coco_json_path = self.gt_to_coco_json(
gt_dicts=gts, outfile_prefix=outfile_prefix)
self.coco = COCO(coco_json_path)
if self.gt_converter is not None:
for id_, ann in self.coco.anns.items():
self.coco.anns[id_] = transform_ann(
ann, self.gt_converter['num_keypoints'],
self.gt_converter['mapping'])
kpts = defaultdict(list)
# group the preds by img_id
for pred in preds:
img_id = pred['img_id']
if self.pred_converter is not None:
pred = transform_pred(pred,
self.pred_converter['num_keypoints'],
self.pred_converter['mapping'])
for idx, keypoints in enumerate(pred['keypoints']):
instance = {
'id': pred['id'],
'img_id': pred['img_id'],
'category_id': pred['category_id'],
'keypoints': keypoints,
'keypoint_scores': pred['keypoint_scores'][idx],
'bbox_score': pred['bbox_scores'][idx],
'keypoints_visible': pred['keypoints_visible'][idx],
'keypoint_probs': pred['keypoint_probs'][idx],
'keypoint_oks': pred['keypoint_oks'][idx],
'keypoint_error': pred['keypoint_error'][idx],
}
# breakpoint()
if 'bbox' in pred:
instance['bbox'] = pred['bbox'][idx]
diagonal = np.sqrt(
instance['bbox'][2]**2 + instance['bbox'][3]**2)
if 'areas' in pred:
instance['area'] = pred['areas'][idx]
diagonal = np.sqrt(instance['area'])
else:
# use keypoint to calculate bbox and get area
area = (
np.max(keypoints[:, 0]) - np.min(keypoints[:, 0])) * (
np.max(keypoints[:, 1]) - np.min(keypoints[:, 1]))
instance['area'] = area
diagonal = np.sqrt(area)
kpts[img_id].append(instance)
# sort keypoint results according to id and remove duplicate ones
kpts = self._sort_and_unique_bboxes(kpts, key='id')
# score the prediction results according to `score_mode`
# and perform NMS according to `nms_mode`
valid_kpts = defaultdict(list)
if self.pred_converter is not None:
num_keypoints = self.pred_converter['num_keypoints']
else:
num_keypoints = self.dataset_meta['num_keypoints']
for img_id, instances in kpts.items():
for instance in instances:
# concatenate the keypoint coordinates and scores
instance['keypoints'] = np.concatenate([
instance['keypoints'], instance['keypoint_probs'][:, None]
],
axis=-1)
if self.score_mode == 'bbox':
instance['score'] = instance['bbox_score']
elif self.score_mode == 'keypoint':
instance['score'] = np.mean(instance['keypoint_scores'])
else:
bbox_score = instance['bbox_score']
if self.score_mode == 'bbox_rle':
keypoint_scores = instance['keypoint_scores']
instance['score'] = float(bbox_score +
np.mean(keypoint_scores) +
np.max(keypoint_scores))
else: # self.score_mode == 'bbox_keypoint':
mean_kpt_score = 0
valid_num = 0
for kpt_idx in range(num_keypoints):
kpt_score = instance['keypoint_scores'][kpt_idx]
kpt_prob = instance['keypoint_probs'][kpt_idx]
kpt_thresh = kpt_score if self.score_thresh_type == 'score' else kpt_prob
if kpt_thresh > self.keypoint_score_thr:
mean_kpt_score += kpt_score
valid_num += 1
if valid_num != 0:
mean_kpt_score /= valid_num
instance['score'] = bbox_score * mean_kpt_score
# perform nms
if self.nms_mode == 'none':
valid_kpts[img_id] = instances
else:
nms = oks_nms if self.nms_mode == 'oks_nms' else soft_oks_nms
keep = nms(
instances,
self.nms_thr,
sigmas=self.dataset_meta['sigmas'])
valid_kpts[img_id] = [instances[_keep] for _keep in keep]
# convert results to coco style and dump into a json file
self.results2json(valid_kpts, outfile_prefix=outfile_prefix)
# only format the results without doing quantitative evaluation
if self.format_only:
logger.info('results are saved in '
f'{osp.dirname(outfile_prefix)}')
return {}
eval_results = OrderedDict()
# mAP evaluation results
logger.info(f'Evaluating {self.__class__.__name__}...')
self.prob_thr = 0.51
# Localization evaluation results
info_str = self._do_python_keypoint_eval(outfile_prefix)
name_value = OrderedDict(info_str)
eval_results.update(name_value)
logger.info('Number of values per dataset: {}'.format(len(eval_results)))
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results
def results2json(self, keypoints: Dict[int, list],
outfile_prefix: str) -> str:
"""Dump the keypoint detection results to a COCO style json file.
Args:
keypoints (Dict[int, list]): Keypoint detection results
of the dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.keypoints.json",
Returns:
str: The json file name of keypoint results.
"""
# the results with category_id
cat_results = []
for _, img_kpts in keypoints.items():
_keypoints = np.array(
[img_kpt['keypoints'] for img_kpt in img_kpts])
num_keypoints = self.dataset_meta['num_keypoints']
# collect all the person keypoints in current image
_keypoints = _keypoints.reshape(-1, num_keypoints * 3)
result = []
for img_kpt, keypoint in zip(img_kpts, _keypoints):
res = {
'image_id': img_kpt['img_id'],
'category_id': img_kpt['category_id'],
'keypoints': keypoint.tolist(),
'score': float(img_kpt['score']),
}
if 'bbox' in img_kpt:
res['bbox'] = img_kpt['bbox'].tolist()
if 'keypoint_probs' in img_kpt:
res['probs'] = img_kpt['keypoint_probs'].tolist()
result.append(res)
cat_results.extend(result)
res_file = f'{outfile_prefix}.keypoints.json'
dump(cat_results, res_file, sort_keys=True, indent=4)
def _do_python_keypoint_eval(self, outfile_prefix: str) -> list:
"""Do keypoint evaluation using COCOAPI.
Args:
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.keypoints.json",
Returns:
list: a list of tuples. Each tuple contains the evaluation stats
name and corresponding stats value.
"""
res_file = f'{outfile_prefix}.keypoints.json'
coco_det = self.coco.loadRes(res_file)
sigmas = self.dataset_meta['sigmas']
info_str = []
for extended_oks, match_by_bbox, ignore_border_points in zip(
self.extended, self.match_by_bbox, self.ignore_border_points
):
prefix = ""
suffix = ""
if match_by_bbox:
prefix = "bbox_" + prefix
if extended_oks:
prefix = "Ex_" + prefix
if ignore_border_points:
suffix = suffix + "_NoBrd"
conf_thr = self.prob_thr
print("+"*80)
print("COCO Eval params: Bbox {:5s}, ExOKS {:5s}".format(
str(match_by_bbox), str(extended_oks)
), end="")
if extended_oks:
print(" with conf_thr: {:.2f} (has probability: {})".format(conf_thr, self.has_probability), end="")
print()
coco_eval = COCOeval(
self.coco,
coco_det,
iouType=self.iou_type,
sigmas=sigmas,
use_area=self.use_area,
extended_oks=extended_oks,
match_by_bbox=match_by_bbox,
confidence_thr=conf_thr,
padding=self.padding,
ignore_near_bbox=ignore_border_points
)
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
try:
stats_names = coco_eval.stats_names
except AttributeError:
if self.iou_type == 'keypoints_crowd':
stats_names = [
'AP', 'AP .5', 'AP .75', 'AR', 'AR .5', 'AR .75',
'AP(E)', 'AP(M)', 'AP(H)'
]
else:
stats_names = [
'AP', 'AP .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR',
'AR .5', 'AR .75', 'AR (M)', 'AR (L)'
]
i_str = list(zip(stats_names, coco_eval.stats))
ignore_stats = self.ignore_stats
# if match_by_bbox or extended_oks:
# ignore_stats.extend(['AP (M)', 'AP (L)', 'AR (M)', 'AR (L)', 'AR'])
i_str = [(k, v) for k, v in i_str if k not in self.ignore_stats]
i_str = [(f'{prefix}{k}', v) for k, v in i_str]
i_str = [(f'{k}{suffix}', v) for k, v in i_str]
info_str.extend(i_str)
return info_str
def _sort_and_unique_bboxes(self,
kpts: Dict[int, list],
key: str = 'id') -> Dict[int, list]:
"""Sort keypoint detection results in each image and remove the
duplicate ones. Usually performed in multi-batch testing.
Args:
kpts (Dict[int, list]): keypoint prediction results. The keys are
'`img_id`' and the values are list that may contain
keypoints of multiple persons. Each element in the list is a
dict containing the ``'key'`` field.
See the argument ``key`` for details.
key (str): The key name in each person prediction results. The
corresponding value will be used for sorting the results.
Default: ``'id'``.
Returns:
Dict[int, list]: The sorted keypoint detection results.
"""
for img_id, persons in kpts.items():
# deal with bottomup-style output
if isinstance(kpts[img_id][0][key], Sequence):
return kpts
num = len(persons)
kpts[img_id] = sorted(kpts[img_id], key=lambda x: x[key])
for i in range(num - 1, 0, -1):
if kpts[img_id][i][key] == kpts[img_id][i - 1][key]:
del kpts[img_id][i]
return kpts
|