Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,997 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger
from mmpose.codecs.utils import pixel_to_camera
from mmpose.registry import METRICS
from ..functional import keypoint_epe
@METRICS.register_module()
class InterHandMetric(BaseMetric):
METRICS = {'MPJPE', 'MRRPE', 'HandednessAcc'}
def __init__(self,
modes: List[str] = ['MPJPE', 'MRRPE', 'HandednessAcc'],
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
for mode in modes:
if mode not in self.METRICS:
raise ValueError("`mode` should be 'MPJPE', 'MRRPE', or "
f"'HandednessAcc', but got '{mode}'.")
self.modes = modes
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from
the model.
"""
for data_sample in data_samples:
# predicted keypoints coordinates, [1, K, D]
pred_coords = data_sample['pred_instances']['keypoints']
_, K, _ = pred_coords.shape
pred_coords_cam = pred_coords.copy()
# ground truth data_info
gt = data_sample['gt_instances']
# ground truth keypoints coordinates, [1, K, D]
gt_coords = gt['keypoints_cam']
keypoints_cam = gt_coords.copy()
# ground truth keypoints_visible, [1, K, 1]
mask = gt['keypoints_visible'].astype(bool).reshape(1, -1)
pred_hand_type = data_sample['pred_instances']['hand_type']
gt_hand_type = data_sample['hand_type']
if pred_hand_type is None and 'HandednessAcc' in self.modes:
raise KeyError('metric HandednessAcc is not supported')
pred_root_depth = data_sample['pred_instances']['rel_root_depth']
if pred_root_depth is None and 'MRRPE' in self.modes:
raise KeyError('metric MRRPE is not supported')
abs_depth = data_sample['abs_depth']
focal = data_sample['focal']
principal_pt = data_sample['principal_pt']
result = {}
if 'MPJPE' in self.modes:
keypoints_cam[..., :21, :] -= keypoints_cam[..., 20, :]
keypoints_cam[..., 21:, :] -= keypoints_cam[..., 41, :]
pred_coords_cam[..., :21, 2] += abs_depth[0]
pred_coords_cam[..., 21:, 2] += abs_depth[1]
pred_coords_cam = pixel_to_camera(pred_coords_cam, focal[0],
focal[1], principal_pt[0],
principal_pt[1])
pred_coords_cam[..., :21, :] -= pred_coords_cam[..., 20, :]
pred_coords_cam[..., 21:, :] -= pred_coords_cam[..., 41, :]
if gt_hand_type.all():
single_mask = np.zeros((1, K), dtype=bool)
interacting_mask = mask
else:
single_mask = mask
interacting_mask = np.zeros((1, K), dtype=bool)
result['pred_coords'] = pred_coords_cam
result['gt_coords'] = keypoints_cam
result['mask'] = mask
result['single_mask'] = single_mask
result['interacting_mask'] = interacting_mask
if 'HandednessAcc' in self.modes:
hand_type_mask = data_sample['hand_type_valid'] > 0
result['pred_hand_type'] = pred_hand_type
result['gt_hand_type'] = gt_hand_type
result['hand_type_mask'] = hand_type_mask
if 'MRRPE' in self.modes:
keypoints_visible = gt['keypoints_visible']
if gt_hand_type.all() and keypoints_visible[
..., 20] and keypoints_visible[..., 41]:
rel_root_mask = np.array([True])
pred_left_root_coords = np.array(
pred_coords[..., 41, :], dtype=np.float32)
pred_left_root_coords[...,
2] += abs_depth[0] + pred_root_depth
pred_left_root_coords = pixel_to_camera(
pred_left_root_coords, focal[0], focal[1],
principal_pt[0], principal_pt[1])
pred_right_root_coords = np.array(
pred_coords[..., 20, :], dtype=np.float32)
pred_right_root_coords[..., 2] += abs_depth[0]
pred_right_root_coords = pixel_to_camera(
pred_right_root_coords, focal[0], focal[1],
principal_pt[0], principal_pt[1])
pred_rel_root_coords = pred_left_root_coords - \
pred_right_root_coords
pred_rel_root_coords = np.expand_dims(
pred_rel_root_coords, axis=0)
gt_rel_root_coords = gt_coords[...,
41, :] - gt_coords[...,
20, :]
gt_rel_root_coords = np.expand_dims(
gt_rel_root_coords, axis=0)
else:
rel_root_mask = np.array([False])
pred_rel_root_coords = np.array([[0, 0, 0]])
pred_rel_root_coords = pred_rel_root_coords.reshape(
1, 1, 3)
gt_rel_root_coords = np.array([[0, 0, 0]]).reshape(1, 1, 3)
result['pred_rel_root_coords'] = pred_rel_root_coords
result['gt_rel_root_coords'] = gt_rel_root_coords
result['rel_root_mask'] = rel_root_mask
self.results.append(result)
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
metrics = dict()
logger.info(f'Evaluating {self.__class__.__name__}...')
if 'MPJPE' in self.modes:
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate(
[result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
single_mask = np.concatenate(
[result['single_mask'] for result in results])
interacting_mask = np.concatenate(
[result['interacting_mask'] for result in results])
metrics['MPJPE_all'] = keypoint_epe(pred_coords, gt_coords, mask)
metrics['MPJPE_single'] = keypoint_epe(pred_coords, gt_coords,
single_mask)
metrics['MPJPE_interacting'] = keypoint_epe(
pred_coords, gt_coords, interacting_mask)
if 'HandednessAcc' in self.modes:
pred_hand_type = np.concatenate(
[result['pred_hand_type'] for result in results])
gt_hand_type = np.concatenate(
[result['gt_hand_type'] for result in results])
hand_type_mask = np.concatenate(
[result['hand_type_mask'] for result in results])
acc = (pred_hand_type == gt_hand_type).all(axis=-1)
metrics['HandednessAcc'] = np.mean(acc[hand_type_mask])
if 'MRRPE' in self.modes:
pred_rel_root_coords = np.concatenate(
[result['pred_rel_root_coords'] for result in results])
gt_rel_root_coords = np.concatenate(
[result['gt_rel_root_coords'] for result in results])
rel_root_mask = np.array(
[result['rel_root_mask'] for result in results])
metrics['MRRPE'] = keypoint_epe(pred_rel_root_coords,
gt_rel_root_coords, rel_root_mask)
return metrics
|