Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,484 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence, Tuple, Union
import torch
import torch.nn.functional as F
from mmengine.model import normal_init
from mmengine.structures import InstanceData
from torch import Tensor, nn
from mmpose.evaluation.functional import multilabel_classification_accuracy
from mmpose.models.necks import GlobalAveragePooling
from mmpose.models.utils.tta import flip_heatmaps
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, Features, InstanceList,
OptConfigType, OptSampleList, Predictions)
from ..base_head import BaseHead
from .heatmap_head import HeatmapHead
OptIntSeq = Optional[Sequence[int]]
def make_linear_layers(feat_dims, relu_final=False):
"""Make linear layers."""
layers = []
for i in range(len(feat_dims) - 1):
layers.append(nn.Linear(feat_dims[i], feat_dims[i + 1]))
if i < len(feat_dims) - 2 or \
(i == len(feat_dims) - 2 and relu_final):
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
class Heatmap3DHead(HeatmapHead):
"""Heatmap3DHead is a sub-module of Interhand3DHead, and outputs 3D
heatmaps. Heatmap3DHead is composed of (>=0) number of deconv layers and a
simple conv2d layer.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
depth_size (int): Number of depth discretization size. Defaults to 64.
deconv_out_channels (Sequence[int], optional): The output channel
number of each deconv layer. Defaults to ``(256, 256, 256)``
deconv_kernel_sizes (Sequence[int | tuple], optional): The kernel size
of each deconv layer. Each element should be either an integer for
both height and width dimensions, or a tuple of two integers for
the height and the width dimension respectively.Defaults to
``(4, 4, 4)``.
final_layer (dict): Arguments of the final Conv2d layer.
Defaults to ``dict(kernel_size=1)``.
init_cfg (Config, optional): Config to control the initialization. See
:attr:`default_init_cfg` for default settings.
"""
def __init__(self,
in_channels: Union[int, Sequence[int]],
out_channels: int,
depth_size: int = 64,
deconv_out_channels: OptIntSeq = (256, 256, 256),
deconv_kernel_sizes: OptIntSeq = (4, 4, 4),
final_layer: dict = dict(kernel_size=1),
init_cfg: OptConfigType = None):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
deconv_out_channels=deconv_out_channels,
deconv_kernel_sizes=deconv_kernel_sizes,
final_layer=final_layer,
init_cfg=init_cfg)
assert out_channels % depth_size == 0
self.depth_size = depth_size
def forward(self, feats: Tensor) -> Tensor:
"""Forward the network. The input is multi scale feature maps and the
output is the heatmap.
Args:
feats (Tensor): Feature map.
Returns:
Tensor: output heatmap.
"""
x = self.deconv_layers(feats)
x = self.final_layer(x)
N, C, H, W = x.shape
# reshape the 2D heatmap to 3D heatmap
x = x.reshape(N, C // self.depth_size, self.depth_size, H, W)
return x
class Heatmap1DHead(nn.Module):
"""Heatmap1DHead is a sub-module of Interhand3DHead, and outputs 1D
heatmaps.
Args:
in_channels (int): Number of input channels. Defaults to 2048.
heatmap_size (int): Heatmap size. Defaults to 64.
hidden_dims (Sequence[int]): Number of feature dimension of FC layers.
Defaults to ``(512, )``.
"""
def __init__(self,
in_channels: int = 2048,
heatmap_size: int = 64,
hidden_dims: Sequence[int] = (512, )):
super().__init__()
self.in_channels = in_channels
self.heatmap_size = heatmap_size
feature_dims = [in_channels, *hidden_dims, heatmap_size]
self.fc = make_linear_layers(feature_dims, relu_final=False)
def soft_argmax_1d(self, heatmap1d):
heatmap1d = F.softmax(heatmap1d, 1)
accu = heatmap1d * torch.arange(
self.heatmap_size, dtype=heatmap1d.dtype,
device=heatmap1d.device)[None, :]
coord = accu.sum(dim=1)
return coord
def forward(self, feats: Tuple[Tensor]) -> Tensor:
"""Forward the network.
Args:
feats (Tuple[Tensor]): Multi scale feature maps.
Returns:
Tensor: output heatmap.
"""
x = self.fc(feats)
x = self.soft_argmax_1d(x).view(-1, 1)
return x
def init_weights(self):
"""Initialize model weights."""
for m in self.fc.modules():
if isinstance(m, nn.Linear):
normal_init(m, mean=0, std=0.01, bias=0)
class MultilabelClassificationHead(nn.Module):
"""MultilabelClassificationHead is a sub-module of Interhand3DHead, and
outputs hand type classification.
Args:
in_channels (int): Number of input channels. Defaults to 2048.
num_labels (int): Number of labels. Defaults to 2.
hidden_dims (Sequence[int]): Number of hidden dimension of FC layers.
Defaults to ``(512, )``.
"""
def __init__(self,
in_channels: int = 2048,
num_labels: int = 2,
hidden_dims: Sequence[int] = (512, )):
super().__init__()
self.in_channels = in_channels
feature_dims = [in_channels, *hidden_dims, num_labels]
self.fc = make_linear_layers(feature_dims, relu_final=False)
def init_weights(self):
for m in self.fc.modules():
if isinstance(m, nn.Linear):
normal_init(m, mean=0, std=0.01, bias=0)
def forward(self, x):
"""Forward function."""
labels = self.fc(x)
return labels
@MODELS.register_module()
class InternetHead(BaseHead):
"""Internet head introduced in `Interhand 2.6M`_ by Moon et al (2020).
Args:
keypoint_head_cfg (dict): Configs of Heatmap3DHead for hand
keypoint estimation.
root_head_cfg (dict): Configs of Heatmap1DHead for relative
hand root depth estimation.
hand_type_head_cfg (dict): Configs of ``MultilabelClassificationHead``
for hand type classification.
loss (Config): Config of the keypoint loss.
Default: :class:`KeypointMSELoss`.
loss_root_depth (dict): Config for relative root depth loss.
Default: :class:`SmoothL1Loss`.
loss_hand_type (dict): Config for hand type classification
loss. Default: :class:`BCELoss`.
decoder (Config, optional): The decoder config that controls decoding
keypoint coordinates from the network output. Default: ``None``.
init_cfg (Config, optional): Config to control the initialization. See
:attr:`default_init_cfg` for default settings
.. _`Interhand 2.6M`: https://arxiv.org/abs/2008.09309
"""
_version = 2
def __init__(self,
keypoint_head_cfg: ConfigType,
root_head_cfg: ConfigType,
hand_type_head_cfg: ConfigType,
loss: ConfigType = dict(
type='KeypointMSELoss', use_target_weight=True),
loss_root_depth: ConfigType = dict(
type='L1Loss', use_target_weight=True),
loss_hand_type: ConfigType = dict(
type='BCELoss', use_target_weight=True),
decoder: OptConfigType = None,
init_cfg: OptConfigType = None):
super().__init__()
# build sub-module heads
self.right_hand_head = Heatmap3DHead(**keypoint_head_cfg)
self.left_hand_head = Heatmap3DHead(**keypoint_head_cfg)
self.root_head = Heatmap1DHead(**root_head_cfg)
self.hand_type_head = MultilabelClassificationHead(
**hand_type_head_cfg)
self.neck = GlobalAveragePooling()
self.loss_module = MODELS.build(loss)
self.root_loss_module = MODELS.build(loss_root_depth)
self.hand_loss_module = MODELS.build(loss_hand_type)
if decoder is not None:
self.decoder = KEYPOINT_CODECS.build(decoder)
else:
self.decoder = None
def forward(self, feats: Tuple[Tensor]) -> Tensor:
"""Forward the network. The input is multi scale feature maps and the
output is the heatmap.
Args:
feats (Tuple[Tensor]): Multi scale feature maps.
Returns:
Tuple[Tensor]: Output heatmap, root depth estimation and hand type
classification.
"""
x = feats[-1]
outputs = []
outputs.append(
torch.cat([self.right_hand_head(x),
self.left_hand_head(x)], dim=1))
x = self.neck(x)
outputs.append(self.root_head(x))
outputs.append(self.hand_type_head(x))
return outputs
def predict(self,
feats: Features,
batch_data_samples: OptSampleList,
test_cfg: ConfigType = {}) -> Predictions:
"""Predict results from features.
Args:
feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
features (or multiple multi-stage features in TTA)
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
test_cfg (dict): The runtime config for testing process. Defaults
to {}
Returns:
InstanceList: Return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
"""
if test_cfg.get('flip_test', False):
# TTA: flip test -> feats = [orig, flipped]
assert isinstance(feats, list) and len(feats) == 2
flip_indices = batch_data_samples[0].metainfo['flip_indices']
_feats, _feats_flip = feats
_batch_outputs = self.forward(_feats)
_batch_heatmaps = _batch_outputs[0]
_batch_outputs_flip = self.forward(_feats_flip)
_batch_heatmaps_flip = flip_heatmaps(
_batch_outputs_flip[0],
flip_mode=test_cfg.get('flip_mode', 'heatmap'),
flip_indices=flip_indices,
shift_heatmap=test_cfg.get('shift_heatmap', False))
batch_heatmaps = (_batch_heatmaps + _batch_heatmaps_flip) * 0.5
# flip relative hand root depth
_batch_root = _batch_outputs[1]
_batch_root_flip = -_batch_outputs_flip[1]
batch_root = (_batch_root + _batch_root_flip) * 0.5
# flip hand type
_batch_type = _batch_outputs[2]
_batch_type_flip = torch.empty_like(_batch_outputs_flip[2])
_batch_type_flip[:, 0] = _batch_type[:, 1]
_batch_type_flip[:, 1] = _batch_type[:, 0]
batch_type = (_batch_type + _batch_type_flip) * 0.5
batch_outputs = [batch_heatmaps, batch_root, batch_type]
else:
batch_outputs = self.forward(feats)
preds = self.decode(tuple(batch_outputs))
return preds
def loss(self,
feats: Tuple[Tensor],
batch_data_samples: OptSampleList,
train_cfg: ConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
feats (Tuple[Tensor]): The multi-stage features
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
train_cfg (dict): The runtime config for training process.
Defaults to {}
Returns:
dict: A dictionary of losses.
"""
pred_fields = self.forward(feats)
pred_heatmaps = pred_fields[0]
_, K, D, W, H = pred_heatmaps.shape
gt_heatmaps = torch.stack([
d.gt_fields.heatmaps.reshape(K, D, W, H)
for d in batch_data_samples
])
keypoint_weights = torch.cat([
d.gt_instance_labels.keypoint_weights for d in batch_data_samples
])
# calculate losses
losses = dict()
# hand keypoint loss
loss = self.loss_module(pred_heatmaps, gt_heatmaps, keypoint_weights)
losses.update(loss_kpt=loss)
# relative root depth loss
gt_roots = torch.stack(
[d.gt_instance_labels.root_depth for d in batch_data_samples])
root_weights = torch.stack([
d.gt_instance_labels.root_depth_weight for d in batch_data_samples
])
loss_root = self.root_loss_module(pred_fields[1], gt_roots,
root_weights)
losses.update(loss_rel_root=loss_root)
# hand type loss
gt_types = torch.stack([
d.gt_instance_labels.type.reshape(-1) for d in batch_data_samples
])
type_weights = torch.stack(
[d.gt_instance_labels.type_weight for d in batch_data_samples])
loss_type = self.hand_loss_module(pred_fields[2], gt_types,
type_weights)
losses.update(loss_hand_type=loss_type)
# calculate accuracy
if train_cfg.get('compute_acc', True):
acc = multilabel_classification_accuracy(
pred=to_numpy(pred_fields[2]),
gt=to_numpy(gt_types),
mask=to_numpy(type_weights))
acc_pose = torch.tensor(acc, device=gt_types.device)
losses.update(acc_pose=acc_pose)
return losses
def decode(self, batch_outputs: Union[Tensor,
Tuple[Tensor]]) -> InstanceList:
"""Decode keypoints from outputs.
Args:
batch_outputs (Tensor | Tuple[Tensor]): The network outputs of
a data batch
Returns:
List[InstanceData]: A list of InstanceData, each contains the
decoded pose information of the instances of one data sample.
"""
def _pack_and_call(args, func):
if not isinstance(args, tuple):
args = (args, )
return func(*args)
if self.decoder is None:
raise RuntimeError(
f'The decoder has not been set in {self.__class__.__name__}. '
'Please set the decoder configs in the init parameters to '
'enable head methods `head.predict()` and `head.decode()`')
batch_output_np = to_numpy(batch_outputs[0], unzip=True)
batch_root_np = to_numpy(batch_outputs[1], unzip=True)
batch_type_np = to_numpy(batch_outputs[2], unzip=True)
batch_keypoints = []
batch_scores = []
batch_roots = []
batch_types = []
for outputs, roots, types in zip(batch_output_np, batch_root_np,
batch_type_np):
keypoints, scores, rel_root_depth, hand_type = _pack_and_call(
tuple([outputs, roots, types]), self.decoder.decode)
batch_keypoints.append(keypoints)
batch_scores.append(scores)
batch_roots.append(rel_root_depth)
batch_types.append(hand_type)
preds = [
InstanceData(
keypoints=keypoints,
keypoint_scores=scores,
rel_root_depth=rel_root_depth,
hand_type=hand_type)
for keypoints, scores, rel_root_depth, hand_type in zip(
batch_keypoints, batch_scores, batch_roots, batch_types)
]
return preds
|