File size: 43,124 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import types
from typing import Dict, List, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmdet.utils import ConfigType, reduce_mean
from mmengine.model import BaseModule, bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor

from mmpose.evaluation.functional import nms_torch
from mmpose.models.utils import (GAUEncoder, SinePositionalEncoding,
                                 filter_scores_and_topk)
from mmpose.registry import MODELS
from mmpose.structures.bbox import bbox_xyxy2cs
from mmpose.utils.typing import Features, OptSampleList, Predictions
from .yoloxpose_head import YOLOXPoseHead

EPS = 1e-8


class RTMOHeadModule(BaseModule):
    """RTMO head module for one-stage human pose estimation.

    This module predicts classification scores, bounding boxes, keypoint
    offsets and visibilities from multi-level feature maps.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        num_keypoints (int): Number of keypoints defined for one instance.
         in_channels (int): Number of channels in the input feature maps.
        cls_feat_channels (int): Number of channels in the classification score
            and objectness prediction branch. Defaults to 256.
         widen_factor (float): Width multiplier, multiply number of
             channels in each layer by this amount. Defaults to 1.0.
        num_groups (int): Group number of group convolution layers in keypoint
            regression branch. Defaults to 8.
        channels_per_group (int): Number of channels for each group of group
            convolution layers in keypoint regression branch. Defaults to 32.
        featmap_strides (Sequence[int]): Downsample factor of each feature
            map. Defaults to [8, 16, 32].
        conv_bias (bool or str): If specified as `auto`, it will be decided
            by the norm_cfg. Bias of conv will be set as True if `norm_cfg`
            is None, otherwise False. Defaults to "auto".
        conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
            convolution layer. Defaults to None.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
            layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
            Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(
        self,
        num_keypoints: int,
        in_channels: int,
        num_classes: int = 1,
        widen_factor: float = 1.0,
        cls_feat_channels: int = 256,
        stacked_convs: int = 2,
        num_groups=8,
        channels_per_group=36,
        pose_vec_channels=-1,
        featmap_strides: Sequence[int] = [8, 16, 32],
        conv_bias: Union[bool, str] = 'auto',
        conv_cfg: Optional[ConfigType] = None,
        norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
        act_cfg: ConfigType = dict(type='SiLU', inplace=True),
        init_cfg: Optional[ConfigType] = None,
    ):
        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.cls_feat_channels = int(cls_feat_channels * widen_factor)
        self.stacked_convs = stacked_convs
        assert conv_bias == 'auto' or isinstance(conv_bias, bool)
        self.conv_bias = conv_bias

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.featmap_strides = featmap_strides

        self.in_channels = int(in_channels * widen_factor)
        self.num_keypoints = num_keypoints

        self.num_groups = num_groups
        self.channels_per_group = int(widen_factor * channels_per_group)
        self.pose_vec_channels = pose_vec_channels

        self._init_layers()

    def _init_layers(self):
        """Initialize heads for all level feature maps."""
        self._init_cls_branch()
        self._init_pose_branch()

    def _init_cls_branch(self):
        """Initialize classification branch for all level feature maps."""
        self.conv_cls = nn.ModuleList()
        for _ in self.featmap_strides:
            stacked_convs = []
            for i in range(self.stacked_convs):
                chn = self.in_channels if i == 0 else self.cls_feat_channels
                stacked_convs.append(
                    ConvModule(
                        chn,
                        self.cls_feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg,
                        bias=self.conv_bias))
            self.conv_cls.append(nn.Sequential(*stacked_convs))

        # output layers
        self.out_cls = nn.ModuleList()
        for _ in self.featmap_strides:
            self.out_cls.append(
                nn.Conv2d(self.cls_feat_channels, self.num_classes, 1))

    def _init_pose_branch(self):
        """Initialize pose prediction branch for all level feature maps."""
        self.conv_pose = nn.ModuleList()
        out_chn = self.num_groups * self.channels_per_group
        for _ in self.featmap_strides:
            stacked_convs = []
            for i in range(self.stacked_convs * 2):
                chn = self.in_channels if i == 0 else out_chn
                groups = 1 if i == 0 else self.num_groups
                stacked_convs.append(
                    ConvModule(
                        chn,
                        out_chn,
                        3,
                        stride=1,
                        padding=1,
                        groups=groups,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg,
                        bias=self.conv_bias))
            self.conv_pose.append(nn.Sequential(*stacked_convs))

        # output layers
        self.out_bbox = nn.ModuleList()
        self.out_kpt_reg = nn.ModuleList()
        self.out_kpt_vis = nn.ModuleList()
        for _ in self.featmap_strides:
            self.out_bbox.append(nn.Conv2d(out_chn, 4, 1))
            self.out_kpt_reg.append(
                nn.Conv2d(out_chn, self.num_keypoints * 2, 1))
            self.out_kpt_vis.append(nn.Conv2d(out_chn, self.num_keypoints, 1))

        if self.pose_vec_channels > 0:
            self.out_pose = nn.ModuleList()
            for _ in self.featmap_strides:
                self.out_pose.append(
                    nn.Conv2d(out_chn, self.pose_vec_channels, 1))

    def init_weights(self):
        """Initialize weights of the head.

        Use prior in model initialization to improve stability.
        """

        super().init_weights()
        bias_init = bias_init_with_prob(0.01)
        for conv_cls in self.out_cls:
            conv_cls.bias.data.fill_(bias_init)

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            cls_scores (List[Tensor]): Classification scores for each level.
            bbox_preds (List[Tensor]): Bounding box predictions for each level.
            kpt_offsets (List[Tensor]): Keypoint offsets for each level.
            kpt_vis (List[Tensor]): Keypoint visibilities for each level.
            pose_feats (List[Tensor]): Pose features for each level.
        """

        cls_scores, bbox_preds = [], []
        kpt_offsets, kpt_vis = [], []
        pose_feats = []

        for i in range(len(x)):

            cls_feat, reg_feat = x[i].split(x[i].size(1) // 2, 1)

            cls_feat = self.conv_cls[i](cls_feat)
            reg_feat = self.conv_pose[i](reg_feat)

            cls_scores.append(self.out_cls[i](cls_feat))
            bbox_preds.append(self.out_bbox[i](reg_feat))
            if self.training:
                # `kpt_offsets` generates the proxy poses for positive
                # sample selection during training
                kpt_offsets.append(self.out_kpt_reg[i](reg_feat))
            kpt_vis.append(self.out_kpt_vis[i](reg_feat))

            if self.pose_vec_channels > 0:
                pose_feats.append(self.out_pose[i](reg_feat))
            else:
                pose_feats.append(reg_feat)

        return cls_scores, bbox_preds, kpt_offsets, kpt_vis, pose_feats


class DCC(BaseModule):
    """Dynamic Coordinate Classifier for One-stage Pose Estimation.

    Args:
        in_channels (int): Number of input feature map channels.
        num_keypoints (int): Number of keypoints for pose estimation.
        feat_channels (int): Number of feature channels.
        num_bins (Tuple[int, int]): Tuple representing the number of bins in
            x and y directions.
        spe_channels (int): Number of channels for Sine Positional Encoding.
            Defaults to 128.
        spe_temperature (float): Temperature for Sine Positional Encoding.
            Defaults to 300.0.
        gau_cfg (dict, optional): Configuration for Gated Attention Unit.
    """

    def __init__(
        self,
        in_channels: int,
        num_keypoints: int,
        feat_channels: int,
        num_bins: Tuple[int, int],
        spe_channels: int = 128,
        spe_temperature: float = 300.0,
        gau_cfg: Optional[dict] = dict(
            s=128,
            expansion_factor=2,
            dropout_rate=0.0,
            drop_path=0.0,
            act_fn='SiLU',
            use_rel_bias=False,
            pos_enc='add'),
    ):
        super().__init__()

        self.in_channels = in_channels
        self.num_keypoints = num_keypoints

        self.feat_channels = feat_channels
        self.num_bins = num_bins
        self.gau_cfg = gau_cfg

        self.spe = SinePositionalEncoding(
            out_channels=spe_channels,
            temperature=spe_temperature,
        )
        self.spe_feat_channels = spe_channels

        self._build_layers()
        self._build_basic_bins()

    def _build_layers(self):
        """Builds layers for the model."""

        # GAU encoder
        if self.gau_cfg is not None:
            gau_cfg = self.gau_cfg.copy()
            gau_cfg['in_token_dims'] = self.feat_channels
            gau_cfg['out_token_dims'] = self.feat_channels
            self.gau = GAUEncoder(**gau_cfg)
            if gau_cfg.get('pos_enc', 'none') in ('add', 'rope'):
                self.pos_enc = nn.Parameter(
                    torch.randn(self.num_keypoints, gau_cfg['s']))

        # fully-connected layers to convert pose feats to keypoint feats
        pose_to_kpts = [
            nn.Linear(self.in_channels,
                      self.feat_channels * self.num_keypoints),
            nn.BatchNorm1d(self.feat_channels * self.num_keypoints)
        ]
        self.pose_to_kpts = nn.Sequential(*pose_to_kpts)

        # adapter layers for dynamic encodings
        self.x_fc = nn.Linear(self.spe_feat_channels, self.feat_channels)
        self.y_fc = nn.Linear(self.spe_feat_channels, self.feat_channels)

        # fully-connected layers to predict sigma
        self.sigma_fc = nn.Sequential(
            nn.Linear(self.in_channels, self.num_keypoints), nn.Sigmoid(),
            Scale(0.1))

    def _build_basic_bins(self):
        """Builds basic bin coordinates for x and y."""
        self.register_buffer('y_bins',
                             torch.linspace(-0.5, 0.5, self.num_bins[1]))
        self.register_buffer('x_bins',
                             torch.linspace(-0.5, 0.5, self.num_bins[0]))

    def _apply_softmax(self, x_hms, y_hms):
        """Apply softmax on 1-D heatmaps.

        Args:
            x_hms (Tensor): 1-D heatmap in x direction.
            y_hms (Tensor): 1-D heatmap in y direction.

        Returns:
            tuple: A tuple containing the normalized x and y heatmaps.
        """

        x_hms = x_hms.clamp(min=-5e4, max=5e4)
        y_hms = y_hms.clamp(min=-5e4, max=5e4)
        pred_x = x_hms - x_hms.max(dim=-1, keepdims=True).values.detach()
        pred_y = y_hms - y_hms.max(dim=-1, keepdims=True).values.detach()

        exp_x, exp_y = pred_x.exp(), pred_y.exp()
        prob_x = exp_x / (exp_x.sum(dim=-1, keepdims=True) + EPS)
        prob_y = exp_y / (exp_y.sum(dim=-1, keepdims=True) + EPS)

        return prob_x, prob_y

    def _get_bin_enc(self, bbox_cs, grids):
        """Calculate dynamic bin encodings for expanded bounding box.

        This function computes dynamic bin allocations and encodings based
        on the expanded bounding box center-scale (bbox_cs) and grid values.
        The process involves adjusting the bins according to the scale and
        center of the bounding box and then applying a sinusoidal positional
        encoding (spe) followed by a fully connected layer (fc) to obtain the
        final x and y bin encodings.

        Args:
            bbox_cs (Tensor): A tensor representing the center and scale of
                bounding boxes.
            grids (Tensor): A tensor representing the grid coordinates.

        Returns:
            tuple: A tuple containing the encoded x and y bins.
        """
        center, scale = bbox_cs.split(2, dim=-1)
        center = center - grids

        x_bins, y_bins = self.x_bins, self.y_bins

        # dynamic bin allocation
        x_bins = x_bins.view(*((1,) * (scale.ndim-1)), -1) \
            * scale[..., 0:1] + center[..., 0:1]
        y_bins = y_bins.view(*((1,) * (scale.ndim-1)), -1) \
            * scale[..., 1:2] + center[..., 1:2]

        # dynamic bin encoding
        x_bins_enc = self.x_fc(self.spe(position=x_bins))
        y_bins_enc = self.y_fc(self.spe(position=y_bins))

        return x_bins_enc, y_bins_enc

    def _pose_feats_to_heatmaps(self, pose_feats, x_bins_enc, y_bins_enc):
        """Convert pose features to heatmaps using x and y bin encodings.

        This function transforms the given pose features into keypoint
        features and then generates x and y heatmaps based on the x and y
        bin encodings. If Gated attention unit (gau) is used, it applies it
        to the keypoint features. The heatmaps are generated using matrix
        multiplication of pose features and bin encodings.

        Args:
            pose_feats (Tensor): The pose features tensor.
            x_bins_enc (Tensor): The encoded x bins tensor.
            y_bins_enc (Tensor): The encoded y bins tensor.

        Returns:
            tuple: A tuple containing the x and y heatmaps.
        """

        kpt_feats = self.pose_to_kpts(pose_feats)

        kpt_feats = kpt_feats.reshape(*kpt_feats.shape[:-1],
                                      self.num_keypoints, self.feat_channels)

        if hasattr(self, 'gau'):
            kpt_feats = self.gau(
                kpt_feats, pos_enc=getattr(self, 'pos_enc', None))

        x_hms = torch.matmul(kpt_feats,
                             x_bins_enc.transpose(-1, -2).contiguous())
        y_hms = torch.matmul(kpt_feats,
                             y_bins_enc.transpose(-1, -2).contiguous())

        return x_hms, y_hms

    def _decode_xy_heatmaps(self, x_hms, y_hms, bbox_cs):
        """Decode x and y heatmaps to obtain coordinates.

        This function  decodes x and y heatmaps to obtain the corresponding
        coordinates. It adjusts the x and y bins based on the bounding box
        center and scale, and then computes the weighted sum of these bins
        with the heatmaps to derive the x and y coordinates.

        Args:
            x_hms (Tensor): The normalized x heatmaps tensor.
            y_hms (Tensor): The normalized y heatmaps tensor.
            bbox_cs (Tensor): The bounding box center-scale tensor.

        Returns:
            Tensor: A tensor of decoded x and y coordinates.
        """
        center, scale = bbox_cs.split(2, dim=-1)

        x_bins, y_bins = self.x_bins, self.y_bins

        x_bins = x_bins.view(*((1,) * (scale.ndim-1)), -1) \
            * scale[..., 0:1] + center[..., 0:1]
        y_bins = y_bins.view(*((1,) * (scale.ndim-1)), -1) \
            * scale[..., 1:2] + center[..., 1:2]

        x = (x_hms * x_bins.unsqueeze(1)).sum(dim=-1)
        y = (y_hms * y_bins.unsqueeze(1)).sum(dim=-1)

        return torch.stack((x, y), dim=-1)

    def generate_target_heatmap(self, kpt_targets, bbox_cs, sigmas, areas):
        """Generate target heatmaps for keypoints based on bounding box.

        This function calculates x and y bins adjusted by bounding box center
        and scale. It then computes distances from keypoint targets to these
        bins and normalizes these distances based on the areas and sigmas.
        Finally, it uses these distances to generate heatmaps for x and y
        coordinates under assumption of laplacian error.

        Args:
            kpt_targets (Tensor): Keypoint targets tensor.
            bbox_cs (Tensor): Bounding box center-scale tensor.
            sigmas (Tensor): Learned deviation of grids.
            areas (Tensor): Areas of GT instance assigned to grids.

        Returns:
            tuple: A tuple containing the x and y heatmaps.
        """

        # calculate the error of each bin from the GT keypoint coordinates
        center, scale = bbox_cs.split(2, dim=-1)
        x_bins = self.x_bins.view(*((1,) * (scale.ndim-1)), -1) \
            * scale[..., 0:1] + center[..., 0:1]
        y_bins = self.y_bins.view(*((1,) * (scale.ndim-1)), -1) \
            * scale[..., 1:2] + center[..., 1:2]

        dist_x = torch.abs(kpt_targets.narrow(2, 0, 1) - x_bins.unsqueeze(1))
        dist_y = torch.abs(kpt_targets.narrow(2, 1, 1) - y_bins.unsqueeze(1))

        # normalize
        areas = areas.pow(0.5).clip(min=1).reshape(-1, 1, 1)
        sigmas = sigmas.clip(min=1e-3).unsqueeze(2)
        dist_x = dist_x / areas / sigmas
        dist_y = dist_y / areas / sigmas

        hm_x = torch.exp(-dist_x / 2) / sigmas
        hm_y = torch.exp(-dist_y / 2) / sigmas

        return hm_x, hm_y

    def forward_train(self, pose_feats, bbox_cs, grids):
        """Forward pass for training.

        This function processes pose features during training. It computes
        sigmas using a fully connected layer, generates bin encodings,
        creates heatmaps from pose features, applies softmax to the heatmaps,
        and then decodes the heatmaps to get pose predictions.

        Args:
            pose_feats (Tensor): The pose features tensor.
            bbox_cs (Tensor): The bounding box in the format of center & scale.
            grids (Tensor): The grid coordinates.

        Returns:
            tuple: A tuple containing pose predictions, heatmaps, and sigmas.
        """
        sigmas = self.sigma_fc(pose_feats)
        x_bins_enc, y_bins_enc = self._get_bin_enc(bbox_cs, grids)
        x_hms, y_hms = self._pose_feats_to_heatmaps(pose_feats, x_bins_enc,
                                                    y_bins_enc)
        x_hms, y_hms = self._apply_softmax(x_hms, y_hms)
        pose_preds = self._decode_xy_heatmaps(x_hms, y_hms, bbox_cs)
        return pose_preds, (x_hms, y_hms), sigmas

    @torch.no_grad()
    def forward_test(self, pose_feats, bbox_cs, grids):
        """Forward pass for testing.

        This function processes pose features during testing. It generates
        bin encodings, creates heatmaps from pose features, and then decodes
        the heatmaps to get pose predictions.

        Args:
            pose_feats (Tensor): The pose features tensor.
            bbox_cs (Tensor): The bounding box in the format of center & scale.
            grids (Tensor): The grid coordinates.

        Returns:
            Tensor: Pose predictions tensor.
        """
        x_bins_enc, y_bins_enc = self._get_bin_enc(bbox_cs, grids)
        x_hms, y_hms = self._pose_feats_to_heatmaps(pose_feats, x_bins_enc,
                                                    y_bins_enc)
        x_hms, y_hms = self._apply_softmax(x_hms, y_hms)
        pose_preds = self._decode_xy_heatmaps(x_hms, y_hms, bbox_cs)
        return pose_preds

    def switch_to_deploy(self, test_cfg: Optional[Dict] = None):
        if getattr(self, 'deploy', False):
            return

        self._convert_pose_to_kpts()
        if hasattr(self, 'gau'):
            self._convert_gau()
        self._convert_forward_test()

        self.deploy = True

    def _convert_pose_to_kpts(self):
        """Merge BatchNorm layer into Fully Connected layer.

        This function merges a BatchNorm layer into the associated Fully
        Connected layer to avoid dimension mismatch during ONNX exportation. It
        adjusts the weights and biases of the FC layer to incorporate the BN
        layer's parameters, and then replaces the original FC layer with the
        updated one.
        """
        fc, bn = self.pose_to_kpts

        # Calculate adjusted weights and biases
        std = (bn.running_var + bn.eps).sqrt()
        weight = fc.weight * (bn.weight / std).unsqueeze(1)
        bias = bn.bias + (fc.bias - bn.running_mean) * bn.weight / std

        # Update FC layer with adjusted parameters
        fc.weight.data = weight.detach()
        fc.bias.data = bias.detach()
        self.pose_to_kpts = fc

    def _convert_gau(self):
        """Reshape and merge tensors for Gated Attention Unit (GAU).

        This function pre-processes the gamma and beta tensors of the GAU and
        handles the position encoding if available. It also redefines the GAU's
        forward method to incorporate these pre-processed tensors, optimizing
        the computation process.
        """
        # Reshape gamma and beta tensors in advance
        gamma_q = self.gau.gamma[0].view(1, 1, 1, self.gau.gamma.size(-1))
        gamma_k = self.gau.gamma[1].view(1, 1, 1, self.gau.gamma.size(-1))
        beta_q = self.gau.beta[0].view(1, 1, 1, self.gau.beta.size(-1))
        beta_k = self.gau.beta[1].view(1, 1, 1, self.gau.beta.size(-1))

        # Adjust beta tensors with position encoding if available
        if hasattr(self, 'pos_enc'):
            pos_enc = self.pos_enc.reshape(1, 1, *self.pos_enc.shape)
            beta_q = beta_q + pos_enc
            beta_k = beta_k + pos_enc

        gamma_q = gamma_q.detach().cpu()
        gamma_k = gamma_k.detach().cpu()
        beta_q = beta_q.detach().cpu()
        beta_k = beta_k.detach().cpu()

        @torch.no_grad()
        def _forward(self, x, *args, **kwargs):
            norm = torch.linalg.norm(x, dim=-1, keepdim=True) * self.ln.scale
            x = x / norm.clamp(min=self.ln.eps) * self.ln.g

            uv = self.uv(x)
            uv = self.act_fn(uv)

            u, v, base = torch.split(uv, [self.e, self.e, self.s], dim=-1)
            if not torch.onnx.is_in_onnx_export():
                q = base * gamma_q.to(base) + beta_q.to(base)
                k = base * gamma_k.to(base) + beta_k.to(base)
            else:
                q = base * gamma_q + beta_q
                k = base * gamma_k + beta_k
            qk = torch.matmul(q, k.transpose(-1, -2))

            kernel = torch.square(torch.nn.functional.relu(qk / self.sqrt_s))
            x = u * torch.matmul(kernel, v)
            x = self.o(x)
            return x

        self.gau._forward = types.MethodType(_forward, self.gau)

    def _convert_forward_test(self):
        """Simplify the forward test process.

        This function precomputes certain tensors and redefines the
        forward_test method for the model. It includes steps for converting
        pose features to keypoint features, performing dynamic bin encoding,
        calculating 1-D heatmaps, and decoding these heatmaps to produce final
        pose predictions.
        """
        x_bins_ = self.x_bins.view(1, 1, -1).detach().cpu()
        y_bins_ = self.y_bins.view(1, 1, -1).detach().cpu()
        dim_t = self.spe.dim_t.view(1, 1, 1, -1).detach().cpu()

        @torch.no_grad()
        def _forward_test(self, pose_feats, bbox_cs, grids):

            # step 1: pose features -> keypoint features
            kpt_feats = self.pose_to_kpts(pose_feats)
            kpt_feats = kpt_feats.reshape(*kpt_feats.shape[:-1],
                                          self.num_keypoints,
                                          self.feat_channels)
            kpt_feats = self.gau(kpt_feats)

            # step 2: dynamic bin encoding
            center, scale = bbox_cs.split(2, dim=-1)
            center = center - grids

            if not torch.onnx.is_in_onnx_export():
                x_bins = x_bins_.to(scale) * scale[..., 0:1] + center[..., 0:1]
                y_bins = y_bins_.to(scale) * scale[..., 1:2] + center[..., 1:2]
                freq_x = x_bins.unsqueeze(-1) / dim_t.to(scale)
                freq_y = y_bins.unsqueeze(-1) / dim_t.to(scale)
            else:
                x_bins = x_bins_ * scale[..., 0:1] + center[..., 0:1]
                y_bins = y_bins_ * scale[..., 1:2] + center[..., 1:2]
                freq_x = x_bins.unsqueeze(-1) / dim_t
                freq_y = y_bins.unsqueeze(-1) / dim_t

            spe_x = torch.cat((freq_x.cos(), freq_x.sin()), dim=-1)
            spe_y = torch.cat((freq_y.cos(), freq_y.sin()), dim=-1)

            x_bins_enc = self.x_fc(spe_x).transpose(-1, -2).contiguous()
            y_bins_enc = self.y_fc(spe_y).transpose(-1, -2).contiguous()

            # step 3: calculate 1-D heatmaps
            x_hms = torch.matmul(kpt_feats, x_bins_enc)
            y_hms = torch.matmul(kpt_feats, y_bins_enc)
            x_hms, y_hms = self._apply_softmax(x_hms, y_hms)

            # step 4: decode 1-D heatmaps through integral
            x = (x_hms * x_bins.unsqueeze(-2)).sum(dim=-1) + grids[..., 0:1]
            y = (y_hms * y_bins.unsqueeze(-2)).sum(dim=-1) + grids[..., 1:2]

            keypoints = torch.stack((x, y), dim=-1)

            if not torch.onnx.is_in_onnx_export():
                keypoints = keypoints.squeeze(0)
            return keypoints

        self.forward_test = types.MethodType(_forward_test, self)


@MODELS.register_module()
class RTMOHead(YOLOXPoseHead):
    """One-stage coordinate classification head introduced in RTMO (2023). This
    head incorporates dynamic coordinate classification and YOLO structure for
    precise keypoint localization.

    Args:
        num_keypoints (int): Number of keypoints to detect.
        head_module_cfg (ConfigType): Configuration for the head module.
        featmap_strides (Sequence[int]): Strides of feature maps.
            Defaults to [16, 32].
        num_classes (int): Number of object classes, defaults to 1.
        use_aux_loss (bool): Indicates whether to use auxiliary loss,
            defaults to False.
        proxy_target_cc (bool): Indicates whether to use keypoints predicted
            by coordinate classification as the targets for proxy regression
            branch. Defaults to False.
        assigner (ConfigType): Configuration for positive sample assigning
            module.
        prior_generator (ConfigType): Configuration for prior generation.
        bbox_padding (float): Padding for bounding boxes, defaults to 1.25.
        overlaps_power (float): Power factor adopted by overlaps before they
            are assigned as targets in classification loss. Defaults to 1.0.
        dcc_cfg (Optional[ConfigType]): Configuration for dynamic coordinate
            classification module.
        loss_cls (Optional[ConfigType]): Configuration for classification loss.
        loss_bbox (Optional[ConfigType]): Configuration for bounding box loss.
        loss_oks (Optional[ConfigType]): Configuration for OKS loss.
        loss_vis (Optional[ConfigType]): Configuration for visibility loss.
        loss_mle (Optional[ConfigType]): Configuration for MLE loss.
        loss_bbox_aux (Optional[ConfigType]): Configuration for auxiliary
            bounding box loss.
    """

    def __init__(
        self,
        num_keypoints: int,
        head_module_cfg: ConfigType,
        featmap_strides: Sequence[int] = [16, 32],
        num_classes: int = 1,
        use_aux_loss: bool = False,
        proxy_target_cc: bool = False,
        assigner: ConfigType = None,
        prior_generator: ConfigType = None,
        bbox_padding: float = 1.25,
        overlaps_power: float = 1.0,
        dcc_cfg: Optional[ConfigType] = None,
        loss_cls: Optional[ConfigType] = None,
        loss_bbox: Optional[ConfigType] = None,
        loss_oks: Optional[ConfigType] = None,
        loss_vis: Optional[ConfigType] = None,
        loss_mle: Optional[ConfigType] = None,
        loss_bbox_aux: Optional[ConfigType] = None,
    ):
        super().__init__(
            num_keypoints=num_keypoints,
            head_module_cfg=None,
            featmap_strides=featmap_strides,
            num_classes=num_classes,
            use_aux_loss=use_aux_loss,
            assigner=assigner,
            prior_generator=prior_generator,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_oks=loss_oks,
            loss_vis=loss_vis,
            loss_bbox_aux=loss_bbox_aux,
            overlaps_power=overlaps_power)

        self.bbox_padding = bbox_padding

        # override to ensure consistency
        head_module_cfg['featmap_strides'] = featmap_strides
        head_module_cfg['num_keypoints'] = num_keypoints

        # build modules
        self.head_module = RTMOHeadModule(**head_module_cfg)

        self.proxy_target_cc = proxy_target_cc
        if dcc_cfg is not None:
            dcc_cfg['num_keypoints'] = num_keypoints
            self.dcc = DCC(**dcc_cfg)

        # build losses
        if loss_mle is not None:
            self.loss_mle = MODELS.build(loss_mle)

    def loss(self,
             feats: Tuple[Tensor],
             batch_data_samples: OptSampleList,
             train_cfg: ConfigType = {}) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            feats (Tuple[Tensor]): The multi-stage features
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            train_cfg (dict): The runtime config for training process.
                Defaults to {}

        Returns:
            dict: A dictionary of losses.
        """

        # 1. collect & reform predictions
        cls_scores, bbox_preds, kpt_offsets, kpt_vis, pose_vecs = self.forward(
            feats)

        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)
        flatten_priors = torch.cat(mlvl_priors)

        # flatten cls_scores, bbox_preds and objectness
        flatten_cls_scores = self._flatten_predictions(cls_scores)
        flatten_bbox_preds = self._flatten_predictions(bbox_preds)
        flatten_objectness = torch.ones_like(
            flatten_cls_scores).detach().narrow(-1, 0, 1) * 1e4
        flatten_kpt_offsets = self._flatten_predictions(kpt_offsets)
        flatten_kpt_vis = self._flatten_predictions(kpt_vis)
        flatten_pose_vecs = self._flatten_predictions(pose_vecs)
        flatten_bbox_decoded = self.decode_bbox(flatten_bbox_preds,
                                                flatten_priors[..., :2],
                                                flatten_priors[..., -1])
        flatten_kpt_decoded = self.decode_kpt_reg(flatten_kpt_offsets,
                                                  flatten_priors[..., :2],
                                                  flatten_priors[..., -1])

        # 2. generate targets
        targets = self._get_targets(flatten_priors,
                                    flatten_cls_scores.detach(),
                                    flatten_objectness.detach(),
                                    flatten_bbox_decoded.detach(),
                                    flatten_kpt_decoded.detach(),
                                    flatten_kpt_vis.detach(),
                                    batch_data_samples)
        pos_masks, cls_targets, obj_targets, obj_weights, \
            bbox_targets, bbox_aux_targets, kpt_targets, kpt_aux_targets, \
            vis_targets, vis_weights, pos_areas, pos_priors, group_indices, \
            num_fg_imgs = targets

        num_pos = torch.tensor(
            sum(num_fg_imgs),
            dtype=torch.float,
            device=flatten_cls_scores.device)
        num_total_samples = max(reduce_mean(num_pos), 1.0)

        # 3. calculate loss
        extra_info = dict(num_samples=num_total_samples)
        losses = dict()
        cls_preds_all = flatten_cls_scores.view(-1, self.num_classes)

        if num_pos > 0:

            # 3.1 bbox loss
            bbox_preds = flatten_bbox_decoded.view(-1, 4)[pos_masks]
            losses['loss_bbox'] = self.loss_bbox(
                bbox_preds, bbox_targets) / num_total_samples

            if self.use_aux_loss:
                if hasattr(self, 'loss_bbox_aux'):
                    bbox_preds_raw = flatten_bbox_preds.view(-1, 4)[pos_masks]
                    losses['loss_bbox_aux'] = self.loss_bbox_aux(
                        bbox_preds_raw, bbox_aux_targets) / num_total_samples

            # 3.2 keypoint visibility loss
            kpt_vis_preds = flatten_kpt_vis.view(-1,
                                                 self.num_keypoints)[pos_masks]
            losses['loss_vis'] = self.loss_vis(kpt_vis_preds, vis_targets,
                                               vis_weights)

            # 3.3 keypoint loss
            kpt_reg_preds = flatten_kpt_decoded.view(-1, self.num_keypoints,
                                                     2)[pos_masks]

            if hasattr(self, 'loss_mle') and self.loss_mle.loss_weight > 0:
                pose_vecs = flatten_pose_vecs.view(
                    -1, flatten_pose_vecs.size(-1))[pos_masks]
                bbox_cs = torch.cat(
                    bbox_xyxy2cs(bbox_preds, self.bbox_padding), dim=1)
                # 'cc' refers to 'cordinate classification'
                kpt_cc_preds, pred_hms, sigmas = \
                    self.dcc.forward_train(pose_vecs,
                                           bbox_cs,
                                           pos_priors[..., :2])
                target_hms = self.dcc.generate_target_heatmap(
                    kpt_targets, bbox_cs, sigmas, pos_areas)
                losses['loss_mle'] = self.loss_mle(pred_hms, target_hms,
                                                   vis_targets)

            if self.proxy_target_cc:
                # form the regression target using the coordinate
                # classification predictions
                with torch.no_grad():
                    diff_cc = torch.norm(kpt_cc_preds - kpt_targets, dim=-1)
                    diff_reg = torch.norm(kpt_reg_preds - kpt_targets, dim=-1)
                    mask = (diff_reg > diff_cc).float()
                    kpt_weights_reg = vis_targets * mask
                    oks = self.assigner.oks_calculator(kpt_cc_preds,
                                                       kpt_targets,
                                                       vis_targets, pos_areas)
                    cls_targets = oks.unsqueeze(1)

                losses['loss_oks'] = self.loss_oks(kpt_reg_preds,
                                                   kpt_cc_preds.detach(),
                                                   kpt_weights_reg, pos_areas)

            else:
                losses['loss_oks'] = self.loss_oks(kpt_reg_preds, kpt_targets,
                                                   vis_targets, pos_areas)

            # update the target for classification loss
            # the target for the positive grids are set to the oks calculated
            # using predictions and assigned ground truth instances
            extra_info['overlaps'] = cls_targets
            cls_targets = cls_targets.pow(self.overlaps_power).detach()
            obj_targets[pos_masks] = cls_targets.to(obj_targets)

        # 3.4 classification loss
        losses['loss_cls'] = self.loss_cls(cls_preds_all, obj_targets,
                                           obj_weights) / num_total_samples
        losses.update(extra_info)

        return losses

    def predict(self,
                feats: Features,
                batch_data_samples: OptSampleList,
                test_cfg: ConfigType = {}) -> Predictions:
        """Predict results from features.

        Args:
            feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
                features (or multiple multi-scale features in TTA)
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            test_cfg (dict): The runtime config for testing process. Defaults
                to {}

        Returns:
            Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
            ``test_cfg['output_heatmap']==True``, return both pose and heatmap
            prediction; otherwise only return the pose prediction.

            The pose prediction is a list of ``InstanceData``, each contains
            the following fields:

                - keypoints (np.ndarray): predicted keypoint coordinates in
                    shape (num_instances, K, D) where K is the keypoint number
                    and D is the keypoint dimension
                - keypoint_scores (np.ndarray): predicted keypoint scores in
                    shape (num_instances, K)

            The heatmap prediction is a list of ``PixelData``, each contains
            the following fields:

                - heatmaps (Tensor): The predicted heatmaps in shape (1, h, w)
                    or (K+1, h, w) if keypoint heatmaps are predicted
                - displacements (Tensor): The predicted displacement fields
                    in shape (K*2, h, w)
        """

        cls_scores, bbox_preds, _, kpt_vis, pose_vecs = self.forward(feats)

        cfg = copy.deepcopy(test_cfg)

        batch_img_metas = [d.metainfo for d in batch_data_samples]
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]

        # If the shape does not change, use the previous mlvl_priors
        if featmap_sizes != self.featmap_sizes:
            self.mlvl_priors = self.prior_generator.grid_priors(
                featmap_sizes,
                dtype=cls_scores[0].dtype,
                device=cls_scores[0].device)
            self.featmap_sizes = featmap_sizes
        flatten_priors = torch.cat(self.mlvl_priors)

        mlvl_strides = [
            flatten_priors.new_full((featmap_size.numel(), ),
                                    stride) for featmap_size, stride in zip(
                                        featmap_sizes, self.featmap_strides)
        ]
        flatten_stride = torch.cat(mlvl_strides)

        # flatten predictions
        flatten_cls_scores = self._flatten_predictions(cls_scores).sigmoid()
        flatten_bbox_preds = self._flatten_predictions(bbox_preds)
        flatten_kpt_vis = self._flatten_predictions(kpt_vis).sigmoid()
        flatten_pose_vecs = self._flatten_predictions(pose_vecs)
        if flatten_pose_vecs is None:
            flatten_pose_vecs = [None] * len(batch_img_metas)
        flatten_bbox_preds = self.decode_bbox(flatten_bbox_preds,
                                              flatten_priors, flatten_stride)

        results_list = []
        for (bboxes, scores, kpt_vis, pose_vecs,
             img_meta) in zip(flatten_bbox_preds, flatten_cls_scores,
                              flatten_kpt_vis, flatten_pose_vecs,
                              batch_img_metas):

            score_thr = cfg.get('score_thr', 0.01)

            nms_pre = cfg.get('nms_pre', 100000)
            scores, labels = scores.max(1, keepdim=True)
            scores, _, keep_idxs_score, results = filter_scores_and_topk(
                scores, score_thr, nms_pre, results=dict(labels=labels[:, 0]))
            labels = results['labels']

            bboxes = bboxes[keep_idxs_score]
            kpt_vis = kpt_vis[keep_idxs_score]
            grids = flatten_priors[keep_idxs_score]
            stride = flatten_stride[keep_idxs_score]

            if bboxes.numel() > 0:
                nms_thr = cfg.get('nms_thr', 1.0)
                if nms_thr < 1.0:

                    keep_idxs_nms = nms_torch(bboxes, scores, nms_thr)
                    bboxes = bboxes[keep_idxs_nms]
                    stride = stride[keep_idxs_nms]
                    labels = labels[keep_idxs_nms]
                    kpt_vis = kpt_vis[keep_idxs_nms]
                    scores = scores[keep_idxs_nms]

                pose_vecs = pose_vecs[keep_idxs_score][keep_idxs_nms]
                bbox_cs = torch.cat(
                    bbox_xyxy2cs(bboxes, self.bbox_padding), dim=1)
                grids = grids[keep_idxs_nms]
                keypoints = self.dcc.forward_test(pose_vecs, bbox_cs, grids)

            else:
                # empty prediction
                keypoints = bboxes.new_zeros((0, self.num_keypoints, 2))

            results = InstanceData(
                scores=scores,
                labels=labels,
                bboxes=bboxes,
                bbox_scores=scores,
                keypoints=keypoints,
                keypoint_scores=kpt_vis,
                keypoints_visible=kpt_vis)

            input_size = img_meta['input_size']
            results.bboxes[:, 0::2].clamp_(0, input_size[0])
            results.bboxes[:, 1::2].clamp_(0, input_size[1])

            results_list.append(results.numpy())

        return results_list

    def switch_to_deploy(self, test_cfg: Optional[Dict]):
        """Precompute and save the grid coordinates and strides."""

        if getattr(self, 'deploy', False):
            return

        self.deploy = True

        # grid generator
        input_size = test_cfg.get('input_size', (640, 640))
        featmaps = []
        for s in self.featmap_strides:
            featmaps.append(
                torch.rand(1, 1, input_size[0] // s, input_size[1] // s))
        featmap_sizes = [fmap.shape[2:] for fmap in featmaps]

        self.mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes, dtype=torch.float32, device='cpu')
        self.flatten_priors = torch.cat(self.mlvl_priors)

        mlvl_strides = [
            self.flatten_priors.new_full((featmap_size.numel(), ), stride) for
            featmap_size, stride in zip(featmap_sizes, self.featmap_strides)
        ]
        self.flatten_stride = torch.cat(mlvl_strides)