Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,632 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule, bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor
from mmpose.evaluation.functional import nms_torch
from mmpose.models.utils import filter_scores_and_topk
from mmpose.registry import MODELS, TASK_UTILS
from mmpose.structures import PoseDataSample
from mmpose.utils import reduce_mean
from mmpose.utils.typing import (ConfigType, Features, OptSampleList,
Predictions, SampleList)
class YOLOXPoseHeadModule(BaseModule):
"""YOLOXPose head module for one-stage human pose estimation.
This module predicts classification scores, bounding boxes, keypoint
offsets and visibilities from multi-level feature maps.
Args:
num_classes (int): Number of categories excluding the background
category.
num_keypoints (int): Number of keypoints defined for one instance.
in_channels (Union[int, Sequence]): Number of channels in the input
feature map.
feat_channels (int): Number of channels in the classification score
and objectness prediction branch. Defaults to 256.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_groups (int): Group number of group convolution layers in keypoint
regression branch. Defaults to 8.
channels_per_group (int): Number of channels for each group of group
convolution layers in keypoint regression branch. Defaults to 32.
featmap_strides (Sequence[int]): Downsample factor of each feature
map. Defaults to [8, 16, 32].
conv_bias (bool or str): If specified as `auto`, it will be decided
by the norm_cfg. Bias of conv will be set as True if `norm_cfg`
is None, otherwise False. Defaults to "auto".
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(
self,
num_keypoints: int,
in_channels: Union[int, Sequence],
num_classes: int = 1,
widen_factor: float = 1.0,
feat_channels: int = 256,
stacked_convs: int = 2,
featmap_strides: Sequence[int] = [8, 16, 32],
conv_bias: Union[bool, str] = 'auto',
conv_cfg: Optional[ConfigType] = None,
norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: Optional[ConfigType] = None,
):
super().__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.feat_channels = int(feat_channels * widen_factor)
self.stacked_convs = stacked_convs
assert conv_bias == 'auto' or isinstance(conv_bias, bool)
self.conv_bias = conv_bias
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.featmap_strides = featmap_strides
if isinstance(in_channels, int):
in_channels = int(in_channels * widen_factor)
self.in_channels = in_channels
self.num_keypoints = num_keypoints
self._init_layers()
def _init_layers(self):
"""Initialize heads for all level feature maps."""
self._init_cls_branch()
self._init_reg_branch()
self._init_pose_branch()
def _init_cls_branch(self):
"""Initialize classification branch for all level feature maps."""
self.conv_cls = nn.ModuleList()
for _ in self.featmap_strides:
stacked_convs = []
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
stacked_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
bias=self.conv_bias))
self.conv_cls.append(nn.Sequential(*stacked_convs))
# output layers
self.out_cls = nn.ModuleList()
self.out_obj = nn.ModuleList()
for _ in self.featmap_strides:
self.out_cls.append(
nn.Conv2d(self.feat_channels, self.num_classes, 1))
def _init_reg_branch(self):
"""Initialize classification branch for all level feature maps."""
self.conv_reg = nn.ModuleList()
for _ in self.featmap_strides:
stacked_convs = []
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
stacked_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
bias=self.conv_bias))
self.conv_reg.append(nn.Sequential(*stacked_convs))
# output layers
self.out_bbox = nn.ModuleList()
self.out_obj = nn.ModuleList()
for _ in self.featmap_strides:
self.out_bbox.append(nn.Conv2d(self.feat_channels, 4, 1))
self.out_obj.append(nn.Conv2d(self.feat_channels, 1, 1))
def _init_pose_branch(self):
self.conv_pose = nn.ModuleList()
for _ in self.featmap_strides:
stacked_convs = []
for i in range(self.stacked_convs * 2):
in_chn = self.in_channels if i == 0 else self.feat_channels
stacked_convs.append(
ConvModule(
in_chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
bias=self.conv_bias))
self.conv_pose.append(nn.Sequential(*stacked_convs))
# output layers
self.out_kpt = nn.ModuleList()
self.out_kpt_vis = nn.ModuleList()
for _ in self.featmap_strides:
self.out_kpt.append(
nn.Conv2d(self.feat_channels, self.num_keypoints * 2, 1))
self.out_kpt_vis.append(
nn.Conv2d(self.feat_channels, self.num_keypoints, 1))
def init_weights(self):
"""Initialize weights of the head."""
# Use prior in model initialization to improve stability
super().init_weights()
bias_init = bias_init_with_prob(0.01)
for conv_cls, conv_obj in zip(self.out_cls, self.out_obj):
conv_cls.bias.data.fill_(bias_init)
conv_obj.bias.data.fill_(bias_init)
def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
"""Forward features from the upstream network.
Args:
x (Tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
cls_scores (List[Tensor]): Classification scores for each level.
objectnesses (List[Tensor]): Objectness scores for each level.
bbox_preds (List[Tensor]): Bounding box predictions for each level.
kpt_offsets (List[Tensor]): Keypoint offsets for each level.
kpt_vis (List[Tensor]): Keypoint visibilities for each level.
"""
cls_scores, bbox_preds, objectnesses = [], [], []
kpt_offsets, kpt_vis = [], []
for i in range(len(x)):
cls_feat = self.conv_cls[i](x[i])
reg_feat = self.conv_reg[i](x[i])
pose_feat = self.conv_pose[i](x[i])
cls_scores.append(self.out_cls[i](cls_feat))
objectnesses.append(self.out_obj[i](reg_feat))
bbox_preds.append(self.out_bbox[i](reg_feat))
kpt_offsets.append(self.out_kpt[i](pose_feat))
kpt_vis.append(self.out_kpt_vis[i](pose_feat))
return cls_scores, objectnesses, bbox_preds, kpt_offsets, kpt_vis
@MODELS.register_module()
class YOLOXPoseHead(BaseModule):
def __init__(
self,
num_keypoints: int,
head_module_cfg: Optional[ConfigType] = None,
featmap_strides: Sequence[int] = [8, 16, 32],
num_classes: int = 1,
use_aux_loss: bool = False,
assigner: ConfigType = None,
prior_generator: ConfigType = None,
loss_cls: Optional[ConfigType] = None,
loss_obj: Optional[ConfigType] = None,
loss_bbox: Optional[ConfigType] = None,
loss_oks: Optional[ConfigType] = None,
loss_vis: Optional[ConfigType] = None,
loss_bbox_aux: Optional[ConfigType] = None,
loss_kpt_aux: Optional[ConfigType] = None,
overlaps_power: float = 1.0,
):
super().__init__()
self.featmap_sizes = None
self.num_classes = num_classes
self.featmap_strides = featmap_strides
self.use_aux_loss = use_aux_loss
self.num_keypoints = num_keypoints
self.overlaps_power = overlaps_power
self.prior_generator = TASK_UTILS.build(prior_generator)
if head_module_cfg is not None:
head_module_cfg['featmap_strides'] = featmap_strides
head_module_cfg['num_keypoints'] = num_keypoints
self.head_module = YOLOXPoseHeadModule(**head_module_cfg)
self.assigner = TASK_UTILS.build(assigner)
# build losses
self.loss_cls = MODELS.build(loss_cls)
if loss_obj is not None:
self.loss_obj = MODELS.build(loss_obj)
self.loss_bbox = MODELS.build(loss_bbox)
self.loss_oks = MODELS.build(loss_oks)
self.loss_vis = MODELS.build(loss_vis)
if loss_bbox_aux is not None:
self.loss_bbox_aux = MODELS.build(loss_bbox_aux)
if loss_kpt_aux is not None:
self.loss_kpt_aux = MODELS.build(loss_kpt_aux)
def forward(self, feats: Features):
assert isinstance(feats, (tuple, list))
return self.head_module(feats)
def loss(self,
feats: Tuple[Tensor],
batch_data_samples: OptSampleList,
train_cfg: ConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
feats (Tuple[Tensor]): The multi-stage features
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
train_cfg (dict): The runtime config for training process.
Defaults to {}
Returns:
dict: A dictionary of losses.
"""
# 1. collect & reform predictions
cls_scores, objectnesses, bbox_preds, kpt_offsets, \
kpt_vis = self.forward(feats)
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device,
with_stride=True)
flatten_priors = torch.cat(mlvl_priors)
# flatten cls_scores, bbox_preds and objectness
flatten_cls_scores = self._flatten_predictions(cls_scores)
flatten_bbox_preds = self._flatten_predictions(bbox_preds)
flatten_objectness = self._flatten_predictions(objectnesses)
flatten_kpt_offsets = self._flatten_predictions(kpt_offsets)
flatten_kpt_vis = self._flatten_predictions(kpt_vis)
flatten_bbox_decoded = self.decode_bbox(flatten_bbox_preds,
flatten_priors[..., :2],
flatten_priors[..., -1])
flatten_kpt_decoded = self.decode_kpt_reg(flatten_kpt_offsets,
flatten_priors[..., :2],
flatten_priors[..., -1])
# 2. generate targets
targets = self._get_targets(flatten_priors,
flatten_cls_scores.detach(),
flatten_objectness.detach(),
flatten_bbox_decoded.detach(),
flatten_kpt_decoded.detach(),
flatten_kpt_vis.detach(),
batch_data_samples)
pos_masks, cls_targets, obj_targets, obj_weights, \
bbox_targets, bbox_aux_targets, kpt_targets, kpt_aux_targets, \
vis_targets, vis_weights, pos_areas, pos_priors, group_indices, \
num_fg_imgs = targets
num_pos = torch.tensor(
sum(num_fg_imgs),
dtype=torch.float,
device=flatten_cls_scores.device)
num_total_samples = max(reduce_mean(num_pos), 1.0)
# 3. calculate loss
# 3.1 objectness loss
losses = dict()
obj_preds = flatten_objectness.view(-1, 1)
losses['loss_obj'] = self.loss_obj(obj_preds, obj_targets,
obj_weights) / num_total_samples
if num_pos > 0:
# 3.2 bbox loss
bbox_preds = flatten_bbox_decoded.view(-1, 4)[pos_masks]
losses['loss_bbox'] = self.loss_bbox(
bbox_preds, bbox_targets) / num_total_samples
# 3.3 keypoint loss
kpt_preds = flatten_kpt_decoded.view(-1, self.num_keypoints,
2)[pos_masks]
losses['loss_kpt'] = self.loss_oks(kpt_preds, kpt_targets,
vis_targets, pos_areas)
# 3.4 keypoint visibility loss
kpt_vis_preds = flatten_kpt_vis.view(-1,
self.num_keypoints)[pos_masks]
losses['loss_vis'] = self.loss_vis(kpt_vis_preds, vis_targets,
vis_weights)
# 3.5 classification loss
cls_preds = flatten_cls_scores.view(-1,
self.num_classes)[pos_masks]
losses['overlaps'] = cls_targets
cls_targets = cls_targets.pow(self.overlaps_power).detach()
losses['loss_cls'] = self.loss_cls(cls_preds,
cls_targets) / num_total_samples
if self.use_aux_loss:
if hasattr(self, 'loss_bbox_aux'):
# 3.6 auxiliary bbox regression loss
bbox_preds_raw = flatten_bbox_preds.view(-1, 4)[pos_masks]
losses['loss_bbox_aux'] = self.loss_bbox_aux(
bbox_preds_raw, bbox_aux_targets) / num_total_samples
if hasattr(self, 'loss_kpt_aux'):
# 3.7 auxiliary keypoint regression loss
kpt_preds_raw = flatten_kpt_offsets.view(
-1, self.num_keypoints, 2)[pos_masks]
kpt_weights = vis_targets / vis_targets.size(-1)
losses['loss_kpt_aux'] = self.loss_kpt_aux(
kpt_preds_raw, kpt_aux_targets, kpt_weights)
return losses
@torch.no_grad()
def _get_targets(
self,
priors: Tensor,
batch_cls_scores: Tensor,
batch_objectness: Tensor,
batch_decoded_bboxes: Tensor,
batch_decoded_kpts: Tensor,
batch_kpt_vis: Tensor,
batch_data_samples: SampleList,
):
num_imgs = len(batch_data_samples)
# use clip to avoid nan
batch_cls_scores = batch_cls_scores.clip(min=-1e4, max=1e4).sigmoid()
batch_objectness = batch_objectness.clip(min=-1e4, max=1e4).sigmoid()
batch_kpt_vis = batch_kpt_vis.clip(min=-1e4, max=1e4).sigmoid()
batch_cls_scores[torch.isnan(batch_cls_scores)] = 0
batch_objectness[torch.isnan(batch_objectness)] = 0
targets_each = []
for i in range(num_imgs):
target = self._get_targets_single(priors, batch_cls_scores[i],
batch_objectness[i],
batch_decoded_bboxes[i],
batch_decoded_kpts[i],
batch_kpt_vis[i],
batch_data_samples[i])
targets_each.append(target)
targets = list(zip(*targets_each))
for i, target in enumerate(targets):
if torch.is_tensor(target[0]):
target = tuple(filter(lambda x: x.size(0) > 0, target))
if len(target) > 0:
targets[i] = torch.cat(target)
foreground_masks, cls_targets, obj_targets, obj_weights, \
bbox_targets, kpt_targets, vis_targets, vis_weights, pos_areas, \
pos_priors, group_indices, num_pos_per_img = targets
# post-processing for targets
if self.use_aux_loss:
bbox_cxcy = (bbox_targets[:, :2] + bbox_targets[:, 2:]) / 2.0
bbox_wh = bbox_targets[:, 2:] - bbox_targets[:, :2]
bbox_aux_targets = torch.cat([
(bbox_cxcy - pos_priors[:, :2]) / pos_priors[:, 2:],
torch.log(bbox_wh / pos_priors[:, 2:] + 1e-8)
],
dim=-1)
kpt_aux_targets = (kpt_targets - pos_priors[:, None, :2]) \
/ pos_priors[:, None, 2:]
else:
bbox_aux_targets, kpt_aux_targets = None, None
return (foreground_masks, cls_targets, obj_targets, obj_weights,
bbox_targets, bbox_aux_targets, kpt_targets, kpt_aux_targets,
vis_targets, vis_weights, pos_areas, pos_priors, group_indices,
num_pos_per_img)
@torch.no_grad()
def _get_targets_single(
self,
priors: Tensor,
cls_scores: Tensor,
objectness: Tensor,
decoded_bboxes: Tensor,
decoded_kpts: Tensor,
kpt_vis: Tensor,
data_sample: PoseDataSample,
) -> tuple:
"""Compute classification, bbox, keypoints and objectness targets for
priors in a single image.
Args:
priors (Tensor): All priors of one image, a 2D-Tensor with shape
[num_priors, 4] in [cx, xy, stride_w, stride_y] format.
cls_scores (Tensor): Classification predictions of one image,
a 2D-Tensor with shape [num_priors, num_classes]
objectness (Tensor): Objectness predictions of one image,
a 1D-Tensor with shape [num_priors]
decoded_bboxes (Tensor): Decoded bboxes predictions of one image,
a 2D-Tensor with shape [num_priors, 4] in xyxy format.
decoded_kpts (Tensor): Decoded keypoints predictions of one image,
a 3D-Tensor with shape [num_priors, num_keypoints, 2].
kpt_vis (Tensor): Keypoints visibility predictions of one image,
a 2D-Tensor with shape [num_priors, num_keypoints].
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
data_sample (PoseDataSample): Data sample that contains the ground
truth annotations for current image.
Returns:
tuple: A tuple containing various target tensors for training:
- foreground_mask (Tensor): Binary mask indicating foreground
priors.
- cls_target (Tensor): Classification targets.
- obj_target (Tensor): Objectness targets.
- obj_weight (Tensor): Weights for objectness targets.
- bbox_target (Tensor): BBox targets.
- kpt_target (Tensor): Keypoints targets.
- vis_target (Tensor): Visibility targets for keypoints.
- vis_weight (Tensor): Weights for keypoints visibility
targets.
- pos_areas (Tensor): Areas of positive samples.
- pos_priors (Tensor): Priors corresponding to positive
samples.
- group_index (List[Tensor]): Indices of groups for positive
samples.
- num_pos_per_img (int): Number of positive samples.
"""
# TODO: change the shape of objectness to [num_priors]
num_priors = priors.size(0)
gt_instances = data_sample.gt_instance_labels
gt_fields = data_sample.get('gt_fields', dict())
num_gts = len(gt_instances)
# No target
if num_gts == 0:
cls_target = cls_scores.new_zeros((0, self.num_classes))
bbox_target = cls_scores.new_zeros((0, 4))
obj_target = cls_scores.new_zeros((num_priors, 1))
obj_weight = cls_scores.new_ones((num_priors, 1))
kpt_target = cls_scores.new_zeros((0, self.num_keypoints, 2))
vis_target = cls_scores.new_zeros((0, self.num_keypoints))
vis_weight = cls_scores.new_zeros((0, self.num_keypoints))
pos_areas = cls_scores.new_zeros((0, ))
pos_priors = priors[:0]
foreground_mask = cls_scores.new_zeros(num_priors).bool()
return (foreground_mask, cls_target, obj_target, obj_weight,
bbox_target, kpt_target, vis_target, vis_weight, pos_areas,
pos_priors, [], 0)
# assign positive samples
scores = cls_scores * objectness
pred_instances = InstanceData(
bboxes=decoded_bboxes,
scores=scores.sqrt_(),
priors=priors,
keypoints=decoded_kpts,
keypoints_visible=kpt_vis,
)
assign_result = self.assigner.assign(
pred_instances=pred_instances, gt_instances=gt_instances)
# sampling
pos_inds = torch.nonzero(
assign_result['gt_inds'] > 0, as_tuple=False).squeeze(-1).unique()
num_pos_per_img = pos_inds.size(0)
pos_gt_labels = assign_result['labels'][pos_inds]
pos_assigned_gt_inds = assign_result['gt_inds'][pos_inds] - 1
# bbox target
bbox_target = gt_instances.bboxes[pos_assigned_gt_inds.long()]
# cls target
max_overlaps = assign_result['max_overlaps'][pos_inds]
cls_target = F.one_hot(pos_gt_labels,
self.num_classes) * max_overlaps.unsqueeze(-1)
# pose targets
kpt_target = gt_instances.keypoints[pos_assigned_gt_inds]
vis_target = gt_instances.keypoints_visible[pos_assigned_gt_inds]
if 'keypoints_visible_weights' in gt_instances:
vis_weight = gt_instances.keypoints_visible_weights[
pos_assigned_gt_inds]
else:
vis_weight = vis_target.new_ones(vis_target.shape)
pos_areas = gt_instances.areas[pos_assigned_gt_inds]
# obj target
obj_target = torch.zeros_like(objectness)
obj_target[pos_inds] = 1
invalid_mask = gt_fields.get('heatmap_mask', None)
if invalid_mask is not None and (invalid_mask != 0.0).any():
# ignore the tokens that predict the unlabled instances
pred_vis = (kpt_vis.unsqueeze(-1) > 0.3).float()
mean_kpts = (decoded_kpts * pred_vis).sum(dim=1) / pred_vis.sum(
dim=1).clamp(min=1e-8)
mean_kpts = mean_kpts.reshape(1, -1, 1, 2)
wh = invalid_mask.shape[-1]
grids = mean_kpts / (wh - 1) * 2 - 1
mask = invalid_mask.unsqueeze(0).float()
weight = F.grid_sample(
mask, grids, mode='bilinear', padding_mode='zeros')
obj_weight = 1.0 - weight.reshape(num_priors, 1)
else:
obj_weight = obj_target.new_ones(obj_target.shape)
# misc
foreground_mask = torch.zeros_like(objectness.squeeze()).to(torch.bool)
foreground_mask[pos_inds] = 1
pos_priors = priors[pos_inds]
group_index = [
torch.where(pos_assigned_gt_inds == num)[0]
for num in torch.unique(pos_assigned_gt_inds)
]
return (foreground_mask, cls_target, obj_target, obj_weight,
bbox_target, kpt_target, vis_target, vis_weight, pos_areas,
pos_priors, group_index, num_pos_per_img)
def predict(self,
feats: Features,
batch_data_samples: OptSampleList,
test_cfg: ConfigType = {}) -> Predictions:
"""Predict results from features.
Args:
feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
features (or multiple multi-scale features in TTA)
batch_data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
test_cfg (dict): The runtime config for testing process. Defaults
to {}
Returns:
Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
``test_cfg['output_heatmap']==True``, return both pose and heatmap
prediction; otherwise only return the pose prediction.
The pose prediction is a list of ``InstanceData``, each contains
the following fields:
- keypoints (np.ndarray): predicted keypoint coordinates in
shape (num_instances, K, D) where K is the keypoint number
and D is the keypoint dimension
- keypoint_scores (np.ndarray): predicted keypoint scores in
shape (num_instances, K)
The heatmap prediction is a list of ``PixelData``, each contains
the following fields:
- heatmaps (Tensor): The predicted heatmaps in shape (1, h, w)
or (K+1, h, w) if keypoint heatmaps are predicted
- displacements (Tensor): The predicted displacement fields
in shape (K*2, h, w)
"""
cls_scores, objectnesses, bbox_preds, kpt_offsets, \
kpt_vis = self.forward(feats)
cfg = copy.deepcopy(test_cfg)
batch_img_metas = [d.metainfo for d in batch_data_samples]
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
# If the shape does not change, use the previous mlvl_priors
if featmap_sizes != self.featmap_sizes:
self.mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device)
self.featmap_sizes = featmap_sizes
flatten_priors = torch.cat(self.mlvl_priors)
mlvl_strides = [
flatten_priors.new_full((featmap_size.numel(), ),
stride) for featmap_size, stride in zip(
featmap_sizes, self.featmap_strides)
]
flatten_stride = torch.cat(mlvl_strides)
# flatten cls_scores, bbox_preds and objectness
flatten_cls_scores = self._flatten_predictions(cls_scores).sigmoid()
flatten_bbox_preds = self._flatten_predictions(bbox_preds)
flatten_objectness = self._flatten_predictions(objectnesses).sigmoid()
flatten_kpt_offsets = self._flatten_predictions(kpt_offsets)
flatten_kpt_vis = self._flatten_predictions(kpt_vis).sigmoid()
flatten_bbox_preds = self.decode_bbox(flatten_bbox_preds,
flatten_priors, flatten_stride)
flatten_kpt_reg = self.decode_kpt_reg(flatten_kpt_offsets,
flatten_priors, flatten_stride)
results_list = []
for (bboxes, scores, objectness, kpt_reg, kpt_vis,
img_meta) in zip(flatten_bbox_preds, flatten_cls_scores,
flatten_objectness, flatten_kpt_reg,
flatten_kpt_vis, batch_img_metas):
score_thr = cfg.get('score_thr', 0.01)
scores *= objectness
nms_pre = cfg.get('nms_pre', 100000)
scores, labels = scores.max(1, keepdim=True)
scores, _, keep_idxs_score, results = filter_scores_and_topk(
scores, score_thr, nms_pre, results=dict(labels=labels[:, 0]))
labels = results['labels']
bboxes = bboxes[keep_idxs_score]
kpt_vis = kpt_vis[keep_idxs_score]
stride = flatten_stride[keep_idxs_score]
keypoints = kpt_reg[keep_idxs_score]
if bboxes.numel() > 0:
nms_thr = cfg.get('nms_thr', 1.0)
if nms_thr < 1.0:
keep_idxs_nms = nms_torch(bboxes, scores, nms_thr)
bboxes = bboxes[keep_idxs_nms]
stride = stride[keep_idxs_nms]
labels = labels[keep_idxs_nms]
kpt_vis = kpt_vis[keep_idxs_nms]
keypoints = keypoints[keep_idxs_nms]
scores = scores[keep_idxs_nms]
results = InstanceData(
scores=scores,
labels=labels,
bboxes=bboxes,
bbox_scores=scores,
keypoints=keypoints,
keypoint_scores=kpt_vis,
keypoints_visible=kpt_vis)
input_size = img_meta['input_size']
results.bboxes[:, 0::2].clamp_(0, input_size[0])
results.bboxes[:, 1::2].clamp_(0, input_size[1])
results_list.append(results.numpy())
return results_list
def decode_bbox(self, pred_bboxes: torch.Tensor, priors: torch.Tensor,
stride: Union[torch.Tensor, int]) -> torch.Tensor:
"""Decode regression results (delta_x, delta_y, log_w, log_h) to
bounding boxes (tl_x, tl_y, br_x, br_y).
Note:
- batch size: B
- token number: N
Args:
pred_bboxes (torch.Tensor): Encoded boxes with shape (B, N, 4),
representing (delta_x, delta_y, log_w, log_h) for each box.
priors (torch.Tensor): Anchors coordinates, with shape (N, 2).
stride (torch.Tensor | int): Strides of the bboxes. It can be a
single value if the same stride applies to all boxes, or it
can be a tensor of shape (N, ) if different strides are used
for each box.
Returns:
torch.Tensor: Decoded bounding boxes with shape (N, 4),
representing (tl_x, tl_y, br_x, br_y) for each box.
"""
stride = stride.view(1, stride.size(0), 1)
priors = priors.view(1, priors.size(0), 2)
xys = (pred_bboxes[..., :2] * stride) + priors
whs = pred_bboxes[..., 2:].exp() * stride
# Calculate bounding box corners
tl_x = xys[..., 0] - whs[..., 0] / 2
tl_y = xys[..., 1] - whs[..., 1] / 2
br_x = xys[..., 0] + whs[..., 0] / 2
br_y = xys[..., 1] + whs[..., 1] / 2
decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1)
return decoded_bboxes
def decode_kpt_reg(self, pred_kpt_offsets: torch.Tensor,
priors: torch.Tensor,
stride: torch.Tensor) -> torch.Tensor:
"""Decode regression results (delta_x, delta_y) to keypoints
coordinates (x, y).
Args:
pred_kpt_offsets (torch.Tensor): Encoded keypoints offsets with
shape (batch_size, num_anchors, num_keypoints, 2).
priors (torch.Tensor): Anchors coordinates with shape
(num_anchors, 2).
stride (torch.Tensor): Strides of the anchors.
Returns:
torch.Tensor: Decoded keypoints coordinates with shape
(batch_size, num_boxes, num_keypoints, 2).
"""
stride = stride.view(1, stride.size(0), 1, 1)
priors = priors.view(1, priors.size(0), 1, 2)
pred_kpt_offsets = pred_kpt_offsets.reshape(
*pred_kpt_offsets.shape[:-1], self.num_keypoints, 2)
decoded_kpts = pred_kpt_offsets * stride + priors
return decoded_kpts
def _flatten_predictions(self, preds: List[Tensor]):
"""Flattens the predictions from a list of tensors to a single
tensor."""
if len(preds) == 0:
return None
preds = [x.permute(0, 2, 3, 1).flatten(1, 2) for x in preds]
return torch.cat(preds, dim=1)
|