File size: 33,632 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule, bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor

from mmpose.evaluation.functional import nms_torch
from mmpose.models.utils import filter_scores_and_topk
from mmpose.registry import MODELS, TASK_UTILS
from mmpose.structures import PoseDataSample
from mmpose.utils import reduce_mean
from mmpose.utils.typing import (ConfigType, Features, OptSampleList,
                                 Predictions, SampleList)


class YOLOXPoseHeadModule(BaseModule):
    """YOLOXPose head module for one-stage human pose estimation.

    This module predicts classification scores, bounding boxes, keypoint
    offsets and visibilities from multi-level feature maps.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        num_keypoints (int): Number of keypoints defined for one instance.
         in_channels (Union[int, Sequence]): Number of channels in the input
             feature map.
        feat_channels (int): Number of channels in the classification score
            and objectness prediction branch. Defaults to 256.
         widen_factor (float): Width multiplier, multiply number of
             channels in each layer by this amount. Defaults to 1.0.
        num_groups (int): Group number of group convolution layers in keypoint
            regression branch. Defaults to 8.
        channels_per_group (int): Number of channels for each group of group
            convolution layers in keypoint regression branch. Defaults to 32.
        featmap_strides (Sequence[int]): Downsample factor of each feature
            map. Defaults to [8, 16, 32].
        conv_bias (bool or str): If specified as `auto`, it will be decided
            by the norm_cfg. Bias of conv will be set as True if `norm_cfg`
            is None, otherwise False. Defaults to "auto".
        conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
            convolution layer. Defaults to None.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
            layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
            Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(
        self,
        num_keypoints: int,
        in_channels: Union[int, Sequence],
        num_classes: int = 1,
        widen_factor: float = 1.0,
        feat_channels: int = 256,
        stacked_convs: int = 2,
        featmap_strides: Sequence[int] = [8, 16, 32],
        conv_bias: Union[bool, str] = 'auto',
        conv_cfg: Optional[ConfigType] = None,
        norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
        act_cfg: ConfigType = dict(type='SiLU', inplace=True),
        init_cfg: Optional[ConfigType] = None,
    ):
        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.feat_channels = int(feat_channels * widen_factor)
        self.stacked_convs = stacked_convs
        assert conv_bias == 'auto' or isinstance(conv_bias, bool)
        self.conv_bias = conv_bias

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.featmap_strides = featmap_strides

        if isinstance(in_channels, int):
            in_channels = int(in_channels * widen_factor)
        self.in_channels = in_channels
        self.num_keypoints = num_keypoints

        self._init_layers()

    def _init_layers(self):
        """Initialize heads for all level feature maps."""
        self._init_cls_branch()
        self._init_reg_branch()
        self._init_pose_branch()

    def _init_cls_branch(self):
        """Initialize classification branch for all level feature maps."""
        self.conv_cls = nn.ModuleList()
        for _ in self.featmap_strides:
            stacked_convs = []
            for i in range(self.stacked_convs):
                chn = self.in_channels if i == 0 else self.feat_channels
                stacked_convs.append(
                    ConvModule(
                        chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg,
                        bias=self.conv_bias))
            self.conv_cls.append(nn.Sequential(*stacked_convs))

        # output layers
        self.out_cls = nn.ModuleList()
        self.out_obj = nn.ModuleList()
        for _ in self.featmap_strides:
            self.out_cls.append(
                nn.Conv2d(self.feat_channels, self.num_classes, 1))

    def _init_reg_branch(self):
        """Initialize classification branch for all level feature maps."""
        self.conv_reg = nn.ModuleList()
        for _ in self.featmap_strides:
            stacked_convs = []
            for i in range(self.stacked_convs):
                chn = self.in_channels if i == 0 else self.feat_channels
                stacked_convs.append(
                    ConvModule(
                        chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg,
                        bias=self.conv_bias))
            self.conv_reg.append(nn.Sequential(*stacked_convs))

        # output layers
        self.out_bbox = nn.ModuleList()
        self.out_obj = nn.ModuleList()
        for _ in self.featmap_strides:
            self.out_bbox.append(nn.Conv2d(self.feat_channels, 4, 1))
            self.out_obj.append(nn.Conv2d(self.feat_channels, 1, 1))

    def _init_pose_branch(self):
        self.conv_pose = nn.ModuleList()

        for _ in self.featmap_strides:
            stacked_convs = []
            for i in range(self.stacked_convs * 2):
                in_chn = self.in_channels if i == 0 else self.feat_channels
                stacked_convs.append(
                    ConvModule(
                        in_chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg,
                        bias=self.conv_bias))
            self.conv_pose.append(nn.Sequential(*stacked_convs))

        # output layers
        self.out_kpt = nn.ModuleList()
        self.out_kpt_vis = nn.ModuleList()
        for _ in self.featmap_strides:
            self.out_kpt.append(
                nn.Conv2d(self.feat_channels, self.num_keypoints * 2, 1))
            self.out_kpt_vis.append(
                nn.Conv2d(self.feat_channels, self.num_keypoints, 1))

    def init_weights(self):
        """Initialize weights of the head."""
        # Use prior in model initialization to improve stability
        super().init_weights()
        bias_init = bias_init_with_prob(0.01)
        for conv_cls, conv_obj in zip(self.out_cls, self.out_obj):
            conv_cls.bias.data.fill_(bias_init)
            conv_obj.bias.data.fill_(bias_init)

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            cls_scores (List[Tensor]): Classification scores for each level.
            objectnesses (List[Tensor]): Objectness scores for each level.
            bbox_preds (List[Tensor]): Bounding box predictions for each level.
            kpt_offsets (List[Tensor]): Keypoint offsets for each level.
            kpt_vis (List[Tensor]): Keypoint visibilities for each level.
        """

        cls_scores, bbox_preds, objectnesses = [], [], []
        kpt_offsets, kpt_vis = [], []

        for i in range(len(x)):

            cls_feat = self.conv_cls[i](x[i])
            reg_feat = self.conv_reg[i](x[i])
            pose_feat = self.conv_pose[i](x[i])

            cls_scores.append(self.out_cls[i](cls_feat))
            objectnesses.append(self.out_obj[i](reg_feat))
            bbox_preds.append(self.out_bbox[i](reg_feat))
            kpt_offsets.append(self.out_kpt[i](pose_feat))
            kpt_vis.append(self.out_kpt_vis[i](pose_feat))

        return cls_scores, objectnesses, bbox_preds, kpt_offsets, kpt_vis


@MODELS.register_module()
class YOLOXPoseHead(BaseModule):

    def __init__(
        self,
        num_keypoints: int,
        head_module_cfg: Optional[ConfigType] = None,
        featmap_strides: Sequence[int] = [8, 16, 32],
        num_classes: int = 1,
        use_aux_loss: bool = False,
        assigner: ConfigType = None,
        prior_generator: ConfigType = None,
        loss_cls: Optional[ConfigType] = None,
        loss_obj: Optional[ConfigType] = None,
        loss_bbox: Optional[ConfigType] = None,
        loss_oks: Optional[ConfigType] = None,
        loss_vis: Optional[ConfigType] = None,
        loss_bbox_aux: Optional[ConfigType] = None,
        loss_kpt_aux: Optional[ConfigType] = None,
        overlaps_power: float = 1.0,
    ):
        super().__init__()

        self.featmap_sizes = None
        self.num_classes = num_classes
        self.featmap_strides = featmap_strides
        self.use_aux_loss = use_aux_loss
        self.num_keypoints = num_keypoints
        self.overlaps_power = overlaps_power

        self.prior_generator = TASK_UTILS.build(prior_generator)
        if head_module_cfg is not None:
            head_module_cfg['featmap_strides'] = featmap_strides
            head_module_cfg['num_keypoints'] = num_keypoints
            self.head_module = YOLOXPoseHeadModule(**head_module_cfg)
        self.assigner = TASK_UTILS.build(assigner)

        # build losses
        self.loss_cls = MODELS.build(loss_cls)
        if loss_obj is not None:
            self.loss_obj = MODELS.build(loss_obj)
        self.loss_bbox = MODELS.build(loss_bbox)
        self.loss_oks = MODELS.build(loss_oks)
        self.loss_vis = MODELS.build(loss_vis)
        if loss_bbox_aux is not None:
            self.loss_bbox_aux = MODELS.build(loss_bbox_aux)
        if loss_kpt_aux is not None:
            self.loss_kpt_aux = MODELS.build(loss_kpt_aux)

    def forward(self, feats: Features):
        assert isinstance(feats, (tuple, list))
        return self.head_module(feats)

    def loss(self,
             feats: Tuple[Tensor],
             batch_data_samples: OptSampleList,
             train_cfg: ConfigType = {}) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            feats (Tuple[Tensor]): The multi-stage features
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            train_cfg (dict): The runtime config for training process.
                Defaults to {}

        Returns:
            dict: A dictionary of losses.
        """

        # 1. collect & reform predictions
        cls_scores, objectnesses, bbox_preds, kpt_offsets, \
            kpt_vis = self.forward(feats)

        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        mlvl_priors = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=cls_scores[0].dtype,
            device=cls_scores[0].device,
            with_stride=True)
        flatten_priors = torch.cat(mlvl_priors)

        # flatten cls_scores, bbox_preds and objectness
        flatten_cls_scores = self._flatten_predictions(cls_scores)
        flatten_bbox_preds = self._flatten_predictions(bbox_preds)
        flatten_objectness = self._flatten_predictions(objectnesses)
        flatten_kpt_offsets = self._flatten_predictions(kpt_offsets)
        flatten_kpt_vis = self._flatten_predictions(kpt_vis)
        flatten_bbox_decoded = self.decode_bbox(flatten_bbox_preds,
                                                flatten_priors[..., :2],
                                                flatten_priors[..., -1])
        flatten_kpt_decoded = self.decode_kpt_reg(flatten_kpt_offsets,
                                                  flatten_priors[..., :2],
                                                  flatten_priors[..., -1])

        # 2. generate targets
        targets = self._get_targets(flatten_priors,
                                    flatten_cls_scores.detach(),
                                    flatten_objectness.detach(),
                                    flatten_bbox_decoded.detach(),
                                    flatten_kpt_decoded.detach(),
                                    flatten_kpt_vis.detach(),
                                    batch_data_samples)
        pos_masks, cls_targets, obj_targets, obj_weights, \
            bbox_targets, bbox_aux_targets, kpt_targets, kpt_aux_targets, \
            vis_targets, vis_weights, pos_areas, pos_priors, group_indices, \
            num_fg_imgs = targets

        num_pos = torch.tensor(
            sum(num_fg_imgs),
            dtype=torch.float,
            device=flatten_cls_scores.device)
        num_total_samples = max(reduce_mean(num_pos), 1.0)

        # 3. calculate loss
        # 3.1 objectness loss
        losses = dict()

        obj_preds = flatten_objectness.view(-1, 1)
        losses['loss_obj'] = self.loss_obj(obj_preds, obj_targets,
                                           obj_weights) / num_total_samples

        if num_pos > 0:
            # 3.2 bbox loss
            bbox_preds = flatten_bbox_decoded.view(-1, 4)[pos_masks]
            losses['loss_bbox'] = self.loss_bbox(
                bbox_preds, bbox_targets) / num_total_samples

            # 3.3 keypoint loss
            kpt_preds = flatten_kpt_decoded.view(-1, self.num_keypoints,
                                                 2)[pos_masks]
            losses['loss_kpt'] = self.loss_oks(kpt_preds, kpt_targets,
                                               vis_targets, pos_areas)

            # 3.4 keypoint visibility loss
            kpt_vis_preds = flatten_kpt_vis.view(-1,
                                                 self.num_keypoints)[pos_masks]
            losses['loss_vis'] = self.loss_vis(kpt_vis_preds, vis_targets,
                                               vis_weights)

            # 3.5 classification loss
            cls_preds = flatten_cls_scores.view(-1,
                                                self.num_classes)[pos_masks]
            losses['overlaps'] = cls_targets
            cls_targets = cls_targets.pow(self.overlaps_power).detach()
            losses['loss_cls'] = self.loss_cls(cls_preds,
                                               cls_targets) / num_total_samples

            if self.use_aux_loss:
                if hasattr(self, 'loss_bbox_aux'):
                    # 3.6 auxiliary bbox regression loss
                    bbox_preds_raw = flatten_bbox_preds.view(-1, 4)[pos_masks]
                    losses['loss_bbox_aux'] = self.loss_bbox_aux(
                        bbox_preds_raw, bbox_aux_targets) / num_total_samples

                if hasattr(self, 'loss_kpt_aux'):
                    # 3.7 auxiliary keypoint regression loss
                    kpt_preds_raw = flatten_kpt_offsets.view(
                        -1, self.num_keypoints, 2)[pos_masks]
                    kpt_weights = vis_targets / vis_targets.size(-1)
                    losses['loss_kpt_aux'] = self.loss_kpt_aux(
                        kpt_preds_raw, kpt_aux_targets, kpt_weights)

        return losses

    @torch.no_grad()
    def _get_targets(
        self,
        priors: Tensor,
        batch_cls_scores: Tensor,
        batch_objectness: Tensor,
        batch_decoded_bboxes: Tensor,
        batch_decoded_kpts: Tensor,
        batch_kpt_vis: Tensor,
        batch_data_samples: SampleList,
    ):
        num_imgs = len(batch_data_samples)

        # use clip to avoid nan
        batch_cls_scores = batch_cls_scores.clip(min=-1e4, max=1e4).sigmoid()
        batch_objectness = batch_objectness.clip(min=-1e4, max=1e4).sigmoid()
        batch_kpt_vis = batch_kpt_vis.clip(min=-1e4, max=1e4).sigmoid()
        batch_cls_scores[torch.isnan(batch_cls_scores)] = 0
        batch_objectness[torch.isnan(batch_objectness)] = 0

        targets_each = []
        for i in range(num_imgs):
            target = self._get_targets_single(priors, batch_cls_scores[i],
                                              batch_objectness[i],
                                              batch_decoded_bboxes[i],
                                              batch_decoded_kpts[i],
                                              batch_kpt_vis[i],
                                              batch_data_samples[i])
            targets_each.append(target)

        targets = list(zip(*targets_each))
        for i, target in enumerate(targets):
            if torch.is_tensor(target[0]):
                target = tuple(filter(lambda x: x.size(0) > 0, target))
                if len(target) > 0:
                    targets[i] = torch.cat(target)

        foreground_masks, cls_targets, obj_targets, obj_weights, \
            bbox_targets, kpt_targets, vis_targets, vis_weights, pos_areas, \
            pos_priors, group_indices, num_pos_per_img = targets

        # post-processing for targets
        if self.use_aux_loss:
            bbox_cxcy = (bbox_targets[:, :2] + bbox_targets[:, 2:]) / 2.0
            bbox_wh = bbox_targets[:, 2:] - bbox_targets[:, :2]
            bbox_aux_targets = torch.cat([
                (bbox_cxcy - pos_priors[:, :2]) / pos_priors[:, 2:],
                torch.log(bbox_wh / pos_priors[:, 2:] + 1e-8)
            ],
                                         dim=-1)

            kpt_aux_targets = (kpt_targets - pos_priors[:, None, :2]) \
                / pos_priors[:, None, 2:]
        else:
            bbox_aux_targets, kpt_aux_targets = None, None

        return (foreground_masks, cls_targets, obj_targets, obj_weights,
                bbox_targets, bbox_aux_targets, kpt_targets, kpt_aux_targets,
                vis_targets, vis_weights, pos_areas, pos_priors, group_indices,
                num_pos_per_img)

    @torch.no_grad()
    def _get_targets_single(
        self,
        priors: Tensor,
        cls_scores: Tensor,
        objectness: Tensor,
        decoded_bboxes: Tensor,
        decoded_kpts: Tensor,
        kpt_vis: Tensor,
        data_sample: PoseDataSample,
    ) -> tuple:
        """Compute classification, bbox, keypoints and objectness targets for
        priors in a single image.

        Args:
            priors (Tensor): All priors of one image, a 2D-Tensor with shape
                [num_priors, 4] in [cx, xy, stride_w, stride_y] format.
            cls_scores (Tensor): Classification predictions of one image,
                a 2D-Tensor with shape [num_priors, num_classes]
            objectness (Tensor): Objectness predictions of one image,
                a 1D-Tensor with shape [num_priors]
            decoded_bboxes (Tensor): Decoded bboxes predictions of one image,
                a 2D-Tensor with shape [num_priors, 4] in xyxy format.
            decoded_kpts (Tensor): Decoded keypoints predictions of one image,
                a 3D-Tensor with shape [num_priors, num_keypoints, 2].
            kpt_vis (Tensor): Keypoints visibility predictions of one image,
                a 2D-Tensor with shape [num_priors, num_keypoints].
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes`` and ``labels``
                attributes.
            data_sample (PoseDataSample): Data sample that contains the ground
                truth annotations for current image.

        Returns:
            tuple: A tuple containing various target tensors for training:
                - foreground_mask (Tensor): Binary mask indicating foreground
                    priors.
                - cls_target (Tensor): Classification targets.
                - obj_target (Tensor): Objectness targets.
                - obj_weight (Tensor): Weights for objectness targets.
                - bbox_target (Tensor): BBox targets.
                - kpt_target (Tensor): Keypoints targets.
                - vis_target (Tensor): Visibility targets for keypoints.
                - vis_weight (Tensor): Weights for keypoints visibility
                    targets.
                - pos_areas (Tensor): Areas of positive samples.
                - pos_priors (Tensor): Priors corresponding to positive
                    samples.
                - group_index (List[Tensor]): Indices of groups for positive
                    samples.
                - num_pos_per_img (int): Number of positive samples.
        """
        # TODO: change the shape of objectness to [num_priors]
        num_priors = priors.size(0)
        gt_instances = data_sample.gt_instance_labels
        gt_fields = data_sample.get('gt_fields', dict())
        num_gts = len(gt_instances)

        # No target
        if num_gts == 0:
            cls_target = cls_scores.new_zeros((0, self.num_classes))
            bbox_target = cls_scores.new_zeros((0, 4))
            obj_target = cls_scores.new_zeros((num_priors, 1))
            obj_weight = cls_scores.new_ones((num_priors, 1))
            kpt_target = cls_scores.new_zeros((0, self.num_keypoints, 2))
            vis_target = cls_scores.new_zeros((0, self.num_keypoints))
            vis_weight = cls_scores.new_zeros((0, self.num_keypoints))
            pos_areas = cls_scores.new_zeros((0, ))
            pos_priors = priors[:0]
            foreground_mask = cls_scores.new_zeros(num_priors).bool()
            return (foreground_mask, cls_target, obj_target, obj_weight,
                    bbox_target, kpt_target, vis_target, vis_weight, pos_areas,
                    pos_priors, [], 0)

        # assign positive samples
        scores = cls_scores * objectness
        pred_instances = InstanceData(
            bboxes=decoded_bboxes,
            scores=scores.sqrt_(),
            priors=priors,
            keypoints=decoded_kpts,
            keypoints_visible=kpt_vis,
        )
        assign_result = self.assigner.assign(
            pred_instances=pred_instances, gt_instances=gt_instances)

        # sampling
        pos_inds = torch.nonzero(
            assign_result['gt_inds'] > 0, as_tuple=False).squeeze(-1).unique()
        num_pos_per_img = pos_inds.size(0)
        pos_gt_labels = assign_result['labels'][pos_inds]
        pos_assigned_gt_inds = assign_result['gt_inds'][pos_inds] - 1

        # bbox target
        bbox_target = gt_instances.bboxes[pos_assigned_gt_inds.long()]

        # cls target
        max_overlaps = assign_result['max_overlaps'][pos_inds]
        cls_target = F.one_hot(pos_gt_labels,
                               self.num_classes) * max_overlaps.unsqueeze(-1)

        # pose targets
        kpt_target = gt_instances.keypoints[pos_assigned_gt_inds]
        vis_target = gt_instances.keypoints_visible[pos_assigned_gt_inds]
        if 'keypoints_visible_weights' in gt_instances:
            vis_weight = gt_instances.keypoints_visible_weights[
                pos_assigned_gt_inds]
        else:
            vis_weight = vis_target.new_ones(vis_target.shape)
        pos_areas = gt_instances.areas[pos_assigned_gt_inds]

        # obj target
        obj_target = torch.zeros_like(objectness)
        obj_target[pos_inds] = 1

        invalid_mask = gt_fields.get('heatmap_mask', None)
        if invalid_mask is not None and (invalid_mask != 0.0).any():
            # ignore the tokens that predict the unlabled instances
            pred_vis = (kpt_vis.unsqueeze(-1) > 0.3).float()
            mean_kpts = (decoded_kpts * pred_vis).sum(dim=1) / pred_vis.sum(
                dim=1).clamp(min=1e-8)
            mean_kpts = mean_kpts.reshape(1, -1, 1, 2)
            wh = invalid_mask.shape[-1]
            grids = mean_kpts / (wh - 1) * 2 - 1
            mask = invalid_mask.unsqueeze(0).float()
            weight = F.grid_sample(
                mask, grids, mode='bilinear', padding_mode='zeros')
            obj_weight = 1.0 - weight.reshape(num_priors, 1)
        else:
            obj_weight = obj_target.new_ones(obj_target.shape)

        # misc
        foreground_mask = torch.zeros_like(objectness.squeeze()).to(torch.bool)
        foreground_mask[pos_inds] = 1
        pos_priors = priors[pos_inds]
        group_index = [
            torch.where(pos_assigned_gt_inds == num)[0]
            for num in torch.unique(pos_assigned_gt_inds)
        ]

        return (foreground_mask, cls_target, obj_target, obj_weight,
                bbox_target, kpt_target, vis_target, vis_weight, pos_areas,
                pos_priors, group_index, num_pos_per_img)

    def predict(self,
                feats: Features,
                batch_data_samples: OptSampleList,
                test_cfg: ConfigType = {}) -> Predictions:
        """Predict results from features.

        Args:
            feats (Tuple[Tensor] | List[Tuple[Tensor]]): The multi-stage
                features (or multiple multi-scale features in TTA)
            batch_data_samples (List[:obj:`PoseDataSample`]): The batch
                data samples
            test_cfg (dict): The runtime config for testing process. Defaults
                to {}

        Returns:
            Union[InstanceList | Tuple[InstanceList | PixelDataList]]: If
            ``test_cfg['output_heatmap']==True``, return both pose and heatmap
            prediction; otherwise only return the pose prediction.

            The pose prediction is a list of ``InstanceData``, each contains
            the following fields:

                - keypoints (np.ndarray): predicted keypoint coordinates in
                    shape (num_instances, K, D) where K is the keypoint number
                    and D is the keypoint dimension
                - keypoint_scores (np.ndarray): predicted keypoint scores in
                    shape (num_instances, K)

            The heatmap prediction is a list of ``PixelData``, each contains
            the following fields:

                - heatmaps (Tensor): The predicted heatmaps in shape (1, h, w)
                    or (K+1, h, w) if keypoint heatmaps are predicted
                - displacements (Tensor): The predicted displacement fields
                    in shape (K*2, h, w)
        """

        cls_scores, objectnesses, bbox_preds, kpt_offsets, \
            kpt_vis = self.forward(feats)

        cfg = copy.deepcopy(test_cfg)

        batch_img_metas = [d.metainfo for d in batch_data_samples]
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]

        # If the shape does not change, use the previous mlvl_priors
        if featmap_sizes != self.featmap_sizes:
            self.mlvl_priors = self.prior_generator.grid_priors(
                featmap_sizes,
                dtype=cls_scores[0].dtype,
                device=cls_scores[0].device)
            self.featmap_sizes = featmap_sizes
        flatten_priors = torch.cat(self.mlvl_priors)

        mlvl_strides = [
            flatten_priors.new_full((featmap_size.numel(), ),
                                    stride) for featmap_size, stride in zip(
                                        featmap_sizes, self.featmap_strides)
        ]
        flatten_stride = torch.cat(mlvl_strides)

        # flatten cls_scores, bbox_preds and objectness
        flatten_cls_scores = self._flatten_predictions(cls_scores).sigmoid()
        flatten_bbox_preds = self._flatten_predictions(bbox_preds)
        flatten_objectness = self._flatten_predictions(objectnesses).sigmoid()
        flatten_kpt_offsets = self._flatten_predictions(kpt_offsets)
        flatten_kpt_vis = self._flatten_predictions(kpt_vis).sigmoid()
        flatten_bbox_preds = self.decode_bbox(flatten_bbox_preds,
                                              flatten_priors, flatten_stride)
        flatten_kpt_reg = self.decode_kpt_reg(flatten_kpt_offsets,
                                              flatten_priors, flatten_stride)

        results_list = []
        for (bboxes, scores, objectness, kpt_reg, kpt_vis,
             img_meta) in zip(flatten_bbox_preds, flatten_cls_scores,
                              flatten_objectness, flatten_kpt_reg,
                              flatten_kpt_vis, batch_img_metas):

            score_thr = cfg.get('score_thr', 0.01)
            scores *= objectness

            nms_pre = cfg.get('nms_pre', 100000)
            scores, labels = scores.max(1, keepdim=True)
            scores, _, keep_idxs_score, results = filter_scores_and_topk(
                scores, score_thr, nms_pre, results=dict(labels=labels[:, 0]))
            labels = results['labels']

            bboxes = bboxes[keep_idxs_score]
            kpt_vis = kpt_vis[keep_idxs_score]
            stride = flatten_stride[keep_idxs_score]
            keypoints = kpt_reg[keep_idxs_score]

            if bboxes.numel() > 0:
                nms_thr = cfg.get('nms_thr', 1.0)
                if nms_thr < 1.0:
                    keep_idxs_nms = nms_torch(bboxes, scores, nms_thr)
                    bboxes = bboxes[keep_idxs_nms]
                    stride = stride[keep_idxs_nms]
                    labels = labels[keep_idxs_nms]
                    kpt_vis = kpt_vis[keep_idxs_nms]
                    keypoints = keypoints[keep_idxs_nms]
                    scores = scores[keep_idxs_nms]

            results = InstanceData(
                scores=scores,
                labels=labels,
                bboxes=bboxes,
                bbox_scores=scores,
                keypoints=keypoints,
                keypoint_scores=kpt_vis,
                keypoints_visible=kpt_vis)

            input_size = img_meta['input_size']
            results.bboxes[:, 0::2].clamp_(0, input_size[0])
            results.bboxes[:, 1::2].clamp_(0, input_size[1])

            results_list.append(results.numpy())

        return results_list

    def decode_bbox(self, pred_bboxes: torch.Tensor, priors: torch.Tensor,
                    stride: Union[torch.Tensor, int]) -> torch.Tensor:
        """Decode regression results (delta_x, delta_y, log_w, log_h) to
        bounding boxes (tl_x, tl_y, br_x, br_y).

        Note:
            - batch size: B
            - token number: N

        Args:
            pred_bboxes (torch.Tensor): Encoded boxes with shape (B, N, 4),
                representing (delta_x, delta_y, log_w, log_h) for each box.
            priors (torch.Tensor): Anchors coordinates, with shape (N, 2).
            stride (torch.Tensor | int): Strides of the bboxes. It can be a
                single value if the same stride applies to all boxes, or it
                can be a tensor of shape (N, ) if different strides are used
                for each box.

        Returns:
            torch.Tensor: Decoded bounding boxes with shape (N, 4),
                representing (tl_x, tl_y, br_x, br_y) for each box.
        """
        stride = stride.view(1, stride.size(0), 1)
        priors = priors.view(1, priors.size(0), 2)

        xys = (pred_bboxes[..., :2] * stride) + priors
        whs = pred_bboxes[..., 2:].exp() * stride

        # Calculate bounding box corners
        tl_x = xys[..., 0] - whs[..., 0] / 2
        tl_y = xys[..., 1] - whs[..., 1] / 2
        br_x = xys[..., 0] + whs[..., 0] / 2
        br_y = xys[..., 1] + whs[..., 1] / 2

        decoded_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1)
        return decoded_bboxes

    def decode_kpt_reg(self, pred_kpt_offsets: torch.Tensor,
                       priors: torch.Tensor,
                       stride: torch.Tensor) -> torch.Tensor:
        """Decode regression results (delta_x, delta_y) to keypoints
        coordinates (x, y).

        Args:
            pred_kpt_offsets (torch.Tensor): Encoded keypoints offsets with
                shape (batch_size, num_anchors, num_keypoints, 2).
            priors (torch.Tensor): Anchors coordinates with shape
                (num_anchors, 2).
            stride (torch.Tensor): Strides of the anchors.

        Returns:
            torch.Tensor: Decoded keypoints coordinates with shape
                (batch_size, num_boxes, num_keypoints, 2).
        """
        stride = stride.view(1, stride.size(0), 1, 1)
        priors = priors.view(1, priors.size(0), 1, 2)
        pred_kpt_offsets = pred_kpt_offsets.reshape(
            *pred_kpt_offsets.shape[:-1], self.num_keypoints, 2)

        decoded_kpts = pred_kpt_offsets * stride + priors
        return decoded_kpts

    def _flatten_predictions(self, preds: List[Tensor]):
        """Flattens the predictions from a list of tensors to a single
        tensor."""
        if len(preds) == 0:
            return None

        preds = [x.permute(0, 2, 3, 1).flatten(1, 2) for x in preds]
        return torch.cat(preds, dim=1)