File size: 62,355 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
# ----------------------------------------------------------------------------
# Adapted from https://github.com/IDEA-Research/ED-Pose/ \
#              tree/master/models/edpose
# Original licence: IDEA License 1.0
# ----------------------------------------------------------------------------

import copy
import math
from typing import Dict, List, Tuple

import numpy as np
import torch
import torch.nn.functional as F
from mmcv.ops import MultiScaleDeformableAttention
from mmengine.model import BaseModule, ModuleList, constant_init
from mmengine.structures import InstanceData
from torch import Tensor, nn

from mmpose.models.utils import inverse_sigmoid
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, Features, OptConfigType,
                                 OptSampleList, Predictions)
from .base_transformer_head import TransformerHead
from .transformers.deformable_detr_layers import (
    DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder)
from .transformers.utils import FFN, PositionEmbeddingSineHW


class EDPoseDecoder(BaseModule):
    """Transformer decoder of EDPose: `Explicit Box Detection Unifies End-to-
    End Multi-Person Pose Estimation.

    Args:
        layer_cfg (ConfigDict): the config of each encoder
            layer. All the layers will share the same config.
        num_layers (int): Number of decoder layers.
        return_intermediate (bool, optional): Whether to return outputs of
            intermediate layers. Defaults to `True`.
        embed_dims (int): Dims of embed.
        query_dim (int): Dims of queries.
        num_feature_levels (int): Number of feature levels.
        num_box_decoder_layers (int): Number of box decoder layers.
        num_keypoints (int): Number of datasets' body keypoints.
        num_dn (int): Number of denosing points.
        num_group (int): Number of decoder layers.
    """

    def __init__(self,
                 layer_cfg,
                 num_layers,
                 return_intermediate,
                 embed_dims: int = 256,
                 query_dim=4,
                 num_feature_levels=1,
                 num_box_decoder_layers=2,
                 num_keypoints=17,
                 num_dn=100,
                 num_group=100):
        super().__init__()

        self.layer_cfg = layer_cfg
        self.num_layers = num_layers
        self.embed_dims = embed_dims

        assert return_intermediate, 'support return_intermediate only'
        self.return_intermediate = return_intermediate

        assert query_dim in [
            2, 4
        ], 'query_dim should be 2/4 but {}'.format(query_dim)
        self.query_dim = query_dim

        self.num_feature_levels = num_feature_levels

        self.layers = ModuleList([
            DeformableDetrTransformerDecoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.norm = nn.LayerNorm(self.embed_dims)

        self.ref_point_head = FFN(self.query_dim // 2 * self.embed_dims,
                                  self.embed_dims, self.embed_dims, 2)

        self.num_keypoints = num_keypoints
        self.query_scale = None
        self.bbox_embed = None
        self.class_embed = None
        self.pose_embed = None
        self.pose_hw_embed = None
        self.num_box_decoder_layers = num_box_decoder_layers
        self.box_pred_damping = None
        self.num_group = num_group
        self.rm_detach = None
        self.num_dn = num_dn
        self.hw = nn.Embedding(self.num_keypoints, 2)
        self.keypoint_embed = nn.Embedding(self.num_keypoints, embed_dims)
        self.kpt_index = [
            x for x in range(self.num_group * (self.num_keypoints + 1))
            if x % (self.num_keypoints + 1) != 0
        ]

    def forward(self, query: Tensor, value: Tensor, key_padding_mask: Tensor,
                reference_points: Tensor, spatial_shapes: Tensor,
                level_start_index: Tensor, valid_ratios: Tensor,
                humandet_attn_mask: Tensor, human2pose_attn_mask: Tensor,
                **kwargs) -> Tuple[Tensor]:
        """Forward function of decoder
        Args:
            query (Tensor): The input queries, has shape (bs, num_queries,
                dim).
            value (Tensor): The input values, has shape (bs, num_value, dim).
            key_padding_mask (Tensor): The `key_padding_mask` of `cross_attn`
                input. ByteTensor, has shape (bs, num_value).
            reference_points (Tensor): The initial reference, has shape
                (bs, num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h) when `as_two_stage` is `True`, otherwise has
                shape (bs, num_queries, 2) with the last dimension arranged
                as (cx, cy).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).
            reg_branches: (obj:`nn.ModuleList`, optional): Used for refining
                the regression results.

        Returns:
            Tuple[Tuple[Tensor]]: Outputs of Deformable Transformer Decoder.

            - output (Tuple[Tensor]): Output embeddings of the last decoder,
              each has shape (num_decoder_layers, num_queries, bs, embed_dims)
            - reference_points (Tensor): The reference of the last decoder
              layer, each has shape (num_decoder_layers, bs, num_queries, 4).
              The coordinates are arranged as (cx, cy, w, h)
        """
        output = query
        attn_mask = humandet_attn_mask
        intermediate = []
        intermediate_reference_points = [reference_points]
        effect_num_dn = self.num_dn if self.training else 0
        inter_select_number = self.num_group
        for layer_id, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = \
                    reference_points[:, :, None] * \
                    torch.cat([valid_ratios, valid_ratios], -1)[None, :]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = \
                    reference_points[:, :, None] * \
                    valid_ratios[None, :]

            query_sine_embed = self.get_proposal_pos_embed(
                reference_points_input[:, :, 0, :])  # nq, bs, 256*2
            query_pos = self.ref_point_head(query_sine_embed)  # nq, bs, 256

            output = layer(
                output.transpose(0, 1),
                query_pos=query_pos.transpose(0, 1),
                value=value.transpose(0, 1),
                key_padding_mask=key_padding_mask,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                valid_ratios=valid_ratios,
                reference_points=reference_points_input.transpose(
                    0, 1).contiguous(),
                self_attn_mask=attn_mask,
                **kwargs)
            output = output.transpose(0, 1)
            intermediate.append(self.norm(output))

            # human update
            if layer_id < self.num_box_decoder_layers:
                delta_unsig = self.bbox_embed[layer_id](output)
                new_reference_points = delta_unsig + inverse_sigmoid(
                    reference_points)
                new_reference_points = new_reference_points.sigmoid()

            # query expansion
            if layer_id == self.num_box_decoder_layers - 1:
                dn_output = output[:effect_num_dn]
                dn_new_reference_points = new_reference_points[:effect_num_dn]
                class_unselected = self.class_embed[layer_id](
                    output)[effect_num_dn:]
                topk_proposals = torch.topk(
                    class_unselected.max(-1)[0], inter_select_number, dim=0)[1]
                new_reference_points_for_box = torch.gather(
                    new_reference_points[effect_num_dn:], 0,
                    topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
                new_output_for_box = torch.gather(
                    output[effect_num_dn:], 0,
                    topk_proposals.unsqueeze(-1).repeat(1, 1, self.embed_dims))
                bs = new_output_for_box.shape[1]
                new_output_for_keypoint = new_output_for_box[:, None, :, :] \
                    + self.keypoint_embed.weight[None, :, None, :]
                if self.num_keypoints == 17:
                    delta_xy = self.pose_embed[-1](new_output_for_keypoint)[
                        ..., :2]
                else:
                    delta_xy = self.pose_embed[0](new_output_for_keypoint)[
                        ..., :2]
                keypoint_xy = (inverse_sigmoid(
                    new_reference_points_for_box[..., :2][:, None]) +
                               delta_xy).sigmoid()
                num_queries, _, bs, _ = keypoint_xy.shape
                keypoint_wh_weight = self.hw.weight.unsqueeze(0).unsqueeze(
                    -2).repeat(num_queries, 1, bs, 1).sigmoid()
                keypoint_wh = keypoint_wh_weight * \
                    new_reference_points_for_box[..., 2:][:, None]
                new_reference_points_for_keypoint = torch.cat(
                    (keypoint_xy, keypoint_wh), dim=-1)
                new_reference_points = torch.cat(
                    (new_reference_points_for_box.unsqueeze(1),
                     new_reference_points_for_keypoint),
                    dim=1).flatten(0, 1)
                output = torch.cat(
                    (new_output_for_box.unsqueeze(1), new_output_for_keypoint),
                    dim=1).flatten(0, 1)
                new_reference_points = torch.cat(
                    (dn_new_reference_points, new_reference_points), dim=0)
                output = torch.cat((dn_output, output), dim=0)
                attn_mask = human2pose_attn_mask

            # human-to-keypoints update
            if layer_id >= self.num_box_decoder_layers:
                effect_num_dn = self.num_dn if self.training else 0
                inter_select_number = self.num_group
                ref_before_sigmoid = inverse_sigmoid(reference_points)
                output_bbox_dn = output[:effect_num_dn]
                output_bbox_norm = output[effect_num_dn:][0::(
                    self.num_keypoints + 1)]
                ref_before_sigmoid_bbox_dn = \
                    ref_before_sigmoid[:effect_num_dn]
                ref_before_sigmoid_bbox_norm = \
                    ref_before_sigmoid[effect_num_dn:][0::(
                        self.num_keypoints + 1)]
                delta_unsig_dn = self.bbox_embed[layer_id](output_bbox_dn)
                delta_unsig_norm = self.bbox_embed[layer_id](output_bbox_norm)
                outputs_unsig_dn = delta_unsig_dn + ref_before_sigmoid_bbox_dn
                outputs_unsig_norm = delta_unsig_norm + \
                    ref_before_sigmoid_bbox_norm
                new_reference_points_for_box_dn = outputs_unsig_dn.sigmoid()
                new_reference_points_for_box_norm = outputs_unsig_norm.sigmoid(
                )
                output_kpt = output[effect_num_dn:].index_select(
                    0, torch.tensor(self.kpt_index, device=output.device))
                delta_xy_unsig = self.pose_embed[layer_id -
                                                 self.num_box_decoder_layers](
                                                     output_kpt)
                outputs_unsig = ref_before_sigmoid[
                    effect_num_dn:].index_select(
                        0, torch.tensor(self.kpt_index,
                                        device=output.device)).clone()
                delta_hw_unsig = self.pose_hw_embed[
                    layer_id - self.num_box_decoder_layers](
                        output_kpt)
                outputs_unsig[..., :2] += delta_xy_unsig[..., :2]
                outputs_unsig[..., 2:] += delta_hw_unsig
                new_reference_points_for_keypoint = outputs_unsig.sigmoid()
                bs = new_reference_points_for_box_norm.shape[1]
                new_reference_points_norm = torch.cat(
                    (new_reference_points_for_box_norm.unsqueeze(1),
                     new_reference_points_for_keypoint.view(
                         -1, self.num_keypoints, bs, 4)),
                    dim=1).flatten(0, 1)
                new_reference_points = torch.cat(
                    (new_reference_points_for_box_dn,
                     new_reference_points_norm),
                    dim=0)

            reference_points = new_reference_points.detach()
            intermediate_reference_points.append(reference_points)

        decoder_outputs = [itm_out.transpose(0, 1) for itm_out in intermediate]
        reference_points = [
            itm_refpoint.transpose(0, 1)
            for itm_refpoint in intermediate_reference_points
        ]

        return decoder_outputs, reference_points

    @staticmethod
    def get_proposal_pos_embed(pos_tensor: Tensor,
                               temperature: int = 10000,
                               num_pos_feats: int = 128) -> Tensor:
        """Get the position embedding of the proposal.

        Args:
            pos_tensor (Tensor): Not normalized proposals, has shape
                (bs, num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h).
            temperature (int, optional): The temperature used for scaling the
                position embedding. Defaults to 10000.
            num_pos_feats (int, optional): The feature dimension for each
                position along x, y, w, and h-axis. Note the final returned
                dimension for each position is 4 times of num_pos_feats.
                Default to 128.

        Returns:
            Tensor: The position embedding of proposal, has shape
            (bs, num_queries, num_pos_feats * 4), with the last dimension
            arranged as (cx, cy, w, h)
        """

        scale = 2 * math.pi
        dim_t = torch.arange(
            num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
        dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
        x_embed = pos_tensor[:, :, 0] * scale
        y_embed = pos_tensor[:, :, 1] * scale
        pos_x = x_embed[:, :, None] / dim_t
        pos_y = y_embed[:, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()),
                            dim=3).flatten(2)
        pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()),
                            dim=3).flatten(2)
        if pos_tensor.size(-1) == 2:
            pos = torch.cat((pos_y, pos_x), dim=2)
        elif pos_tensor.size(-1) == 4:
            w_embed = pos_tensor[:, :, 2] * scale
            pos_w = w_embed[:, :, None] / dim_t
            pos_w = torch.stack(
                (pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()),
                dim=3).flatten(2)

            h_embed = pos_tensor[:, :, 3] * scale
            pos_h = h_embed[:, :, None] / dim_t
            pos_h = torch.stack(
                (pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()),
                dim=3).flatten(2)

            pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
        else:
            raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
                pos_tensor.size(-1)))
        return pos


class EDPoseOutHead(BaseModule):
    """Final Head of EDPose: `Explicit Box Detection Unifies End-to-End Multi-
    Person Pose Estimation.

    Args:
        num_classes (int): The number of classes.
        num_keypoints (int): The number of datasets' body keypoints.
        num_queries (int): The number of queries.
        cls_no_bias (bool): Weather add the bias to class embed.
        embed_dims (int): The dims of embed.
        as_two_stage (bool, optional): Whether to generate the proposal
            from the outputs of encoder. Defaults to `False`.
        refine_queries_num (int): The number of refines queries after
            decoders.
        num_box_decoder_layers (int): The number of bbox decoder layer.
        num_group (int): The number of groups.
        num_pred_layer (int): The number of the prediction layers.
            Defaults to 6.
        dec_pred_class_embed_share (bool): Whether to share parameters
            for all the class prediction layers. Defaults to `False`.
        dec_pred_bbox_embed_share (bool): Whether to share parameters
            for all the bbox prediction layers. Defaults to `False`.
        dec_pred_pose_embed_share (bool): Whether to share parameters
            for all the pose prediction layers. Defaults to `False`.
    """

    def __init__(self,
                 num_classes,
                 num_keypoints: int = 17,
                 num_queries: int = 900,
                 cls_no_bias: bool = False,
                 embed_dims: int = 256,
                 as_two_stage: bool = False,
                 refine_queries_num: int = 100,
                 num_box_decoder_layers: int = 2,
                 num_group: int = 100,
                 num_pred_layer: int = 6,
                 dec_pred_class_embed_share: bool = False,
                 dec_pred_bbox_embed_share: bool = False,
                 dec_pred_pose_embed_share: bool = False,
                 **kwargs):
        super().__init__()
        self.embed_dims = embed_dims
        self.as_two_stage = as_two_stage
        self.num_classes = num_classes
        self.refine_queries_num = refine_queries_num
        self.num_box_decoder_layers = num_box_decoder_layers
        self.num_keypoints = num_keypoints
        self.num_queries = num_queries

        # prepare pred layers
        self.dec_pred_class_embed_share = dec_pred_class_embed_share
        self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
        self.dec_pred_pose_embed_share = dec_pred_pose_embed_share
        # prepare class & box embed
        _class_embed = nn.Linear(
            self.embed_dims, self.num_classes, bias=(not cls_no_bias))
        if not cls_no_bias:
            prior_prob = 0.01
            bias_value = -math.log((1 - prior_prob) / prior_prob)
            _class_embed.bias.data = torch.ones(self.num_classes) * bias_value

        _bbox_embed = FFN(self.embed_dims, self.embed_dims, 4, 3)
        _pose_embed = FFN(self.embed_dims, self.embed_dims, 2, 3)
        _pose_hw_embed = FFN(self.embed_dims, self.embed_dims, 2, 3)

        self.num_group = num_group
        if dec_pred_bbox_embed_share:
            box_embed_layerlist = [_bbox_embed for i in range(num_pred_layer)]
        else:
            box_embed_layerlist = [
                copy.deepcopy(_bbox_embed) for i in range(num_pred_layer)
            ]
        if dec_pred_class_embed_share:
            class_embed_layerlist = [
                _class_embed for i in range(num_pred_layer)
            ]
        else:
            class_embed_layerlist = [
                copy.deepcopy(_class_embed) for i in range(num_pred_layer)
            ]

        if num_keypoints == 17:
            if dec_pred_pose_embed_share:
                pose_embed_layerlist = [
                    _pose_embed
                    for i in range(num_pred_layer - num_box_decoder_layers + 1)
                ]
            else:
                pose_embed_layerlist = [
                    copy.deepcopy(_pose_embed)
                    for i in range(num_pred_layer - num_box_decoder_layers + 1)
                ]
        else:
            if dec_pred_pose_embed_share:
                pose_embed_layerlist = [
                    _pose_embed
                    for i in range(num_pred_layer - num_box_decoder_layers)
                ]
            else:
                pose_embed_layerlist = [
                    copy.deepcopy(_pose_embed)
                    for i in range(num_pred_layer - num_box_decoder_layers)
                ]

        pose_hw_embed_layerlist = [
            _pose_hw_embed
            for i in range(num_pred_layer - num_box_decoder_layers)
        ]
        self.bbox_embed = nn.ModuleList(box_embed_layerlist)
        self.class_embed = nn.ModuleList(class_embed_layerlist)
        self.pose_embed = nn.ModuleList(pose_embed_layerlist)
        self.pose_hw_embed = nn.ModuleList(pose_hw_embed_layerlist)

    def init_weights(self) -> None:
        """Initialize weights of the Deformable DETR head."""

        for m in self.bbox_embed:
            constant_init(m[-1], 0, bias=0)
        for m in self.pose_embed:
            constant_init(m[-1], 0, bias=0)

    def forward(self, hidden_states: List[Tensor], references: List[Tensor],
                mask_dict: Dict, hidden_states_enc: Tensor,
                referens_enc: Tensor, batch_data_samples) -> Dict:
        """Forward function.

        Args:
            hidden_states (Tensor): Hidden states output from each decoder
                layer, has shape (num_decoder_layers, bs, num_queries, dim).
            references (list[Tensor]): List of the reference from the decoder.

        Returns:
            tuple[Tensor]: results of head containing the following tensor.

            - pred_logits (Tensor): Outputs from the
              classification head, the socres of every bboxes.
            - pred_boxes (Tensor): The output boxes.
            - pred_keypoints (Tensor): The output keypoints.
        """
        # update human boxes
        effec_dn_num = self.refine_queries_num if self.training else 0
        outputs_coord_list = []
        outputs_class = []
        for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_cls_embed,
                      layer_hs) in enumerate(
                          zip(references[:-1], self.bbox_embed,
                              self.class_embed, hidden_states)):
            if dec_lid < self.num_box_decoder_layers:
                layer_delta_unsig = layer_bbox_embed(layer_hs)
                layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(
                    layer_ref_sig)
                layer_outputs_unsig = layer_outputs_unsig.sigmoid()
                layer_cls = layer_cls_embed(layer_hs)
                outputs_coord_list.append(layer_outputs_unsig)
                outputs_class.append(layer_cls)
            else:
                layer_hs_bbox_dn = layer_hs[:, :effec_dn_num, :]
                layer_hs_bbox_norm = \
                    layer_hs[:, effec_dn_num:, :][:, 0::(
                        self.num_keypoints + 1), :]
                bs = layer_ref_sig.shape[0]
                ref_before_sigmoid_bbox_dn = \
                    layer_ref_sig[:, : effec_dn_num, :]
                ref_before_sigmoid_bbox_norm = \
                    layer_ref_sig[:, effec_dn_num:, :][:, 0::(
                        self.num_keypoints + 1), :]
                layer_delta_unsig_dn = layer_bbox_embed(layer_hs_bbox_dn)
                layer_delta_unsig_norm = layer_bbox_embed(layer_hs_bbox_norm)
                layer_outputs_unsig_dn = layer_delta_unsig_dn + \
                    inverse_sigmoid(ref_before_sigmoid_bbox_dn)
                layer_outputs_unsig_dn = layer_outputs_unsig_dn.sigmoid()
                layer_outputs_unsig_norm = layer_delta_unsig_norm + \
                    inverse_sigmoid(ref_before_sigmoid_bbox_norm)
                layer_outputs_unsig_norm = layer_outputs_unsig_norm.sigmoid()
                layer_outputs_unsig = torch.cat(
                    (layer_outputs_unsig_dn, layer_outputs_unsig_norm), dim=1)
                layer_cls_dn = layer_cls_embed(layer_hs_bbox_dn)
                layer_cls_norm = layer_cls_embed(layer_hs_bbox_norm)
                layer_cls = torch.cat((layer_cls_dn, layer_cls_norm), dim=1)
                outputs_class.append(layer_cls)
                outputs_coord_list.append(layer_outputs_unsig)

        # update keypoints boxes
        outputs_keypoints_list = []
        kpt_index = [
            x for x in range(self.num_group * (self.num_keypoints + 1))
            if x % (self.num_keypoints + 1) != 0
        ]
        for dec_lid, (layer_ref_sig, layer_hs) in enumerate(
                zip(references[:-1], hidden_states)):
            if dec_lid < self.num_box_decoder_layers:
                assert isinstance(layer_hs, torch.Tensor)
                bs = layer_hs.shape[0]
                layer_res = layer_hs.new_zeros(
                    (bs, self.num_queries, self.num_keypoints * 3))
                outputs_keypoints_list.append(layer_res)
            else:
                bs = layer_ref_sig.shape[0]
                layer_hs_kpt = \
                    layer_hs[:, effec_dn_num:, :].index_select(
                        1, torch.tensor(kpt_index, device=layer_hs.device))
                delta_xy_unsig = self.pose_embed[dec_lid -
                                                 self.num_box_decoder_layers](
                                                     layer_hs_kpt)
                layer_ref_sig_kpt = \
                    layer_ref_sig[:, effec_dn_num:, :].index_select(
                        1, torch.tensor(kpt_index, device=layer_hs.device))
                layer_outputs_unsig_keypoints = delta_xy_unsig + \
                    inverse_sigmoid(layer_ref_sig_kpt[..., :2])
                vis_xy_unsig = torch.ones_like(
                    layer_outputs_unsig_keypoints,
                    device=layer_outputs_unsig_keypoints.device)
                xyv = torch.cat((layer_outputs_unsig_keypoints,
                                 vis_xy_unsig[:, :, 0].unsqueeze(-1)),
                                dim=-1)
                xyv = xyv.sigmoid()
                layer_res = xyv.reshape(
                    (bs, self.num_group, self.num_keypoints, 3)).flatten(2, 3)
                layer_res = self.keypoint_xyzxyz_to_xyxyzz(layer_res)
                outputs_keypoints_list.append(layer_res)

        dn_mask_dict = mask_dict
        if self.refine_queries_num > 0 and dn_mask_dict is not None:
            outputs_class, outputs_coord_list, outputs_keypoints_list = \
                self.dn_post_process2(
                    outputs_class, outputs_coord_list,
                    outputs_keypoints_list, dn_mask_dict
                )

        for _out_class, _out_bbox, _out_keypoint in zip(
                outputs_class, outputs_coord_list, outputs_keypoints_list):
            assert _out_class.shape[1] == \
                _out_bbox.shape[1] == _out_keypoint.shape[1]

        return outputs_class[-1], outputs_coord_list[
            -1], outputs_keypoints_list[-1]

    def keypoint_xyzxyz_to_xyxyzz(self, keypoints: torch.Tensor):
        """
        Args:
            keypoints (torch.Tensor): ..., 51
        """
        res = torch.zeros_like(keypoints)
        num_points = keypoints.shape[-1] // 3
        res[..., 0:2 * num_points:2] = keypoints[..., 0::3]
        res[..., 1:2 * num_points:2] = keypoints[..., 1::3]
        res[..., 2 * num_points:] = keypoints[..., 2::3]
        return res


@MODELS.register_module()
class EDPoseHead(TransformerHead):
    """Head introduced in `Explicit Box Detection Unifies End-to-End Multi-
    Person Pose Estimation`_ by J Yang1 et al (2023). The head is composed of
    Encoder, Decoder and Out_head.

    Code is modified from the `official github repo
    <https://github.com/IDEA-Research/ED-Pose>`_.

    More details can be found in the `paper
    <https://arxiv.org/pdf/2302.01593.pdf>`_ .

    Args:
        num_queries (int): Number of query in Transformer.
        num_feature_levels (int): Number of feature levels. Defaults to 4.
        num_keypoints (int): Number of keypoints. Defaults to 4.
        as_two_stage (bool, optional): Whether to generate the proposal
            from the outputs of encoder. Defaults to `False`.
        encoder (:obj:`ConfigDict` or dict, optional): Config of the
            Transformer encoder. Defaults to None.
        decoder (:obj:`ConfigDict` or dict, optional): Config of the
            Transformer decoder. Defaults to None.
        out_head (:obj:`ConfigDict` or dict, optional): Config for the
            bounding final out head module. Defaults to None.
        positional_encoding (:obj:`ConfigDict` or dict): Config for
            transformer position encoding. Defaults None.
        denosing_cfg (:obj:`ConfigDict` or dict, optional): Config of the
            human query denoising training strategy.
        data_decoder (:obj:`ConfigDict` or dict, optional): Config of the
            data decoder which transform the results from output space to
            input space.
        dec_pred_class_embed_share (bool): Whether to share the class embed
            layer. Default False.
        dec_pred_bbox_embed_share (bool): Whether to share the bbox embed
            layer. Default False.
        refine_queries_num (int): Number of refined human content queries
            and their position queries .
        two_stage_keep_all_tokens (bool): Whether to keep all tokens.
    """

    def __init__(self,
                 num_queries: int = 100,
                 num_feature_levels: int = 4,
                 num_keypoints: int = 17,
                 as_two_stage: bool = False,
                 encoder: OptConfigType = None,
                 decoder: OptConfigType = None,
                 out_head: OptConfigType = None,
                 positional_encoding: OptConfigType = None,
                 data_decoder: OptConfigType = None,
                 denosing_cfg: OptConfigType = None,
                 dec_pred_class_embed_share: bool = False,
                 dec_pred_bbox_embed_share: bool = False,
                 refine_queries_num: int = 100,
                 two_stage_keep_all_tokens: bool = False) -> None:

        self.as_two_stage = as_two_stage
        self.num_feature_levels = num_feature_levels
        self.refine_queries_num = refine_queries_num
        self.dec_pred_class_embed_share = dec_pred_class_embed_share
        self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
        self.two_stage_keep_all_tokens = two_stage_keep_all_tokens
        self.num_heads = decoder['layer_cfg']['self_attn_cfg']['num_heads']
        self.num_group = decoder['num_group']
        self.num_keypoints = num_keypoints
        self.denosing_cfg = denosing_cfg
        if data_decoder is not None:
            self.data_decoder = KEYPOINT_CODECS.build(data_decoder)
        else:
            self.data_decoder = None

        super().__init__(
            encoder=encoder,
            decoder=decoder,
            out_head=out_head,
            positional_encoding=positional_encoding,
            num_queries=num_queries)

        self.positional_encoding = PositionEmbeddingSineHW(
            **self.positional_encoding_cfg)
        self.encoder = DeformableDetrTransformerEncoder(**self.encoder_cfg)
        self.decoder = EDPoseDecoder(
            num_keypoints=num_keypoints, **self.decoder_cfg)
        self.out_head = EDPoseOutHead(
            num_keypoints=num_keypoints,
            as_two_stage=as_two_stage,
            refine_queries_num=refine_queries_num,
            **self.out_head_cfg,
            **self.decoder_cfg)

        self.embed_dims = self.encoder.embed_dims
        self.label_enc = nn.Embedding(
            self.denosing_cfg['dn_labelbook_size'] + 1, self.embed_dims)

        if not self.as_two_stage:
            self.query_embedding = nn.Embedding(self.num_queries,
                                                self.embed_dims)
            self.refpoint_embedding = nn.Embedding(self.num_queries, 4)

        self.level_embed = nn.Parameter(
            torch.Tensor(self.num_feature_levels, self.embed_dims))

        self.decoder.bbox_embed = self.out_head.bbox_embed
        self.decoder.pose_embed = self.out_head.pose_embed
        self.decoder.pose_hw_embed = self.out_head.pose_hw_embed
        self.decoder.class_embed = self.out_head.class_embed

        if self.as_two_stage:
            self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
            self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
            if dec_pred_class_embed_share and dec_pred_bbox_embed_share:
                self.enc_out_bbox_embed = self.out_head.bbox_embed[0]
            else:
                self.enc_out_bbox_embed = copy.deepcopy(
                    self.out_head.bbox_embed[0])

            if dec_pred_class_embed_share and dec_pred_bbox_embed_share:
                self.enc_out_class_embed = self.out_head.class_embed[0]
            else:
                self.enc_out_class_embed = copy.deepcopy(
                    self.out_head.class_embed[0])

    def init_weights(self) -> None:
        """Initialize weights for Transformer and other components."""
        super().init_weights()
        for coder in self.encoder, self.decoder:
            for p in coder.parameters():
                if p.dim() > 1:
                    nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MultiScaleDeformableAttention):
                m.init_weights()
        if self.as_two_stage:
            nn.init.xavier_uniform_(self.memory_trans_fc.weight)

        nn.init.normal_(self.level_embed)

    def pre_transformer(self,
                        img_feats: Tuple[Tensor],
                        batch_data_samples: OptSampleList = None
                        ) -> Tuple[Dict]:
        """Process image features before feeding them to the transformer.

        Args:
            img_feats (tuple[Tensor]): Multi-level features that may have
                different resolutions, output from neck. Each feature has
                shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'.
            batch_data_samples (list[:obj:`DetDataSample`], optional): The
                batch data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
                Defaults to None.

        Returns:
            tuple[dict]: The first dict contains the inputs of encoder and the
            second dict contains the inputs of decoder.

            - encoder_inputs_dict (dict): The keyword args dictionary of
              `self.encoder()`.
            - decoder_inputs_dict (dict): The keyword args dictionary of
              `self.forward_decoder()`, which includes 'memory_mask'.
        """
        batch_size = img_feats[0].size(0)
        # construct binary masks for the transformer.
        assert batch_data_samples is not None
        batch_input_shape = batch_data_samples[0].batch_input_shape
        img_shape_list = [sample.img_shape for sample in batch_data_samples]
        input_img_h, input_img_w = batch_input_shape
        masks = img_feats[0].new_ones((batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w = img_shape_list[img_id]
            masks[img_id, :img_h, :img_w] = 0
        # NOTE following the official DETR repo, non-zero values representing
        # ignored positions, while zero values means valid positions.

        mlvl_masks = []
        mlvl_pos_embeds = []
        for feat in img_feats:
            mlvl_masks.append(
                F.interpolate(masks[None],
                              size=feat.shape[-2:]).to(torch.bool).squeeze(0))
            mlvl_pos_embeds.append(self.positional_encoding(mlvl_masks[-1]))

        feat_flatten = []
        lvl_pos_embed_flatten = []
        mask_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(img_feats, mlvl_masks, mlvl_pos_embeds)):
            batch_size, c, h, w = feat.shape
            # [bs, c, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl, c]
            feat = feat.view(batch_size, c, -1).permute(0, 2, 1)
            pos_embed = pos_embed.view(batch_size, c, -1).permute(0, 2, 1)
            lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
            # [bs, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl]
            mask = mask.flatten(1)
            spatial_shape = (h, w)

            feat_flatten.append(feat)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            mask_flatten.append(mask)
            spatial_shapes.append(spatial_shape)

        # (bs, num_feat_points, dim)
        feat_flatten = torch.cat(feat_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        # (bs, num_feat_points), where num_feat_points = sum_lvl(h_lvl*w_lvl)
        mask_flatten = torch.cat(mask_flatten, 1)

        spatial_shapes = torch.as_tensor(  # (num_level, 2)
            spatial_shapes,
            dtype=torch.long,
            device=feat_flatten.device)
        level_start_index = torch.cat((
            spatial_shapes.new_zeros((1, )),  # (num_level)
            spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(  # (bs, num_level, 2)
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        if self.refine_queries_num > 0 or batch_data_samples is not None:
            input_query_label, input_query_bbox, humandet_attn_mask, \
                human2pose_attn_mask, mask_dict =\
                self.prepare_for_denosing(
                    batch_data_samples,
                    device=img_feats[0].device)
        else:
            assert batch_data_samples is None
            input_query_bbox = input_query_label = \
                humandet_attn_mask = human2pose_attn_mask = mask_dict = None

        encoder_inputs_dict = dict(
            query=feat_flatten,
            query_pos=lvl_pos_embed_flatten,
            key_padding_mask=mask_flatten,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios)
        decoder_inputs_dict = dict(
            memory_mask=mask_flatten,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            humandet_attn_mask=humandet_attn_mask,
            human2pose_attn_mask=human2pose_attn_mask,
            input_query_bbox=input_query_bbox,
            input_query_label=input_query_label,
            mask_dict=mask_dict)
        return encoder_inputs_dict, decoder_inputs_dict

    def forward_encoder(self,
                        img_feats: Tuple[Tensor],
                        batch_data_samples: OptSampleList = None) -> Dict:
        """Forward with Transformer encoder.

        The forward procedure is defined as:
        'pre_transformer' -> 'encoder'

        Args:
            img_feats (tuple[Tensor]): Multi-level features that may have
                different resolutions, output from neck. Each feature has
                shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'.
            batch_data_samples (list[:obj:`DetDataSample`], optional): The
                batch data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
                Defaults to None.

        Returns:
            dict: The dictionary of encoder outputs, which includes the
            `memory` of the encoder output.
        """
        encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer(
            img_feats, batch_data_samples)

        memory = self.encoder(**encoder_inputs_dict)
        encoder_outputs_dict = dict(memory=memory, **decoder_inputs_dict)
        return encoder_outputs_dict

    def pre_decoder(self, memory: Tensor, memory_mask: Tensor,
                    spatial_shapes: Tensor, input_query_bbox: Tensor,
                    input_query_label: Tensor) -> Tuple[Dict, Dict]:
        """Prepare intermediate variables before entering Transformer decoder,
        such as `query` and `reference_points`.

        Args:
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points). It will only be used when
                `as_two_stage` is `True`.
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
                It will only be used when `as_two_stage` is `True`.
            input_query_bbox (Tensor): Denosing bbox query for training.
            input_query_label (Tensor): Denosing label query for training.

        Returns:
            tuple[dict, dict]: The decoder_inputs_dict and head_inputs_dict.

            - decoder_inputs_dict (dict): The keyword dictionary args of
              `self.decoder()`.
            - head_inputs_dict (dict): The keyword dictionary args of the
              bbox_head functions.
        """
        bs, _, c = memory.shape
        if self.as_two_stage:
            output_memory, output_proposals = \
                self.gen_encoder_output_proposals(
                    memory, memory_mask, spatial_shapes)
            enc_outputs_class = self.enc_out_class_embed(output_memory)
            enc_outputs_coord_unact = self.enc_out_bbox_embed(
                output_memory) + output_proposals

            topk_proposals = torch.topk(
                enc_outputs_class.max(-1)[0], self.num_queries, dim=1)[1]
            topk_coords_undetach = torch.gather(
                enc_outputs_coord_unact, 1,
                topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
            topk_coords_unact = topk_coords_undetach.detach()
            reference_points = topk_coords_unact.sigmoid()

            query_undetach = torch.gather(
                output_memory, 1,
                topk_proposals.unsqueeze(-1).repeat(1, 1, self.embed_dims))
            query = query_undetach.detach()

            if input_query_bbox is not None:
                reference_points = torch.cat(
                    [input_query_bbox, topk_coords_unact], dim=1).sigmoid()
                query = torch.cat([input_query_label, query], dim=1)
            if self.two_stage_keep_all_tokens:
                hidden_states_enc = output_memory.unsqueeze(0)
                referens_enc = enc_outputs_coord_unact.unsqueeze(0)
            else:
                hidden_states_enc = query_undetach.unsqueeze(0)
                referens_enc = topk_coords_undetach.sigmoid().unsqueeze(0)
        else:
            hidden_states_enc, referens_enc = None, None
            query = self.query_embedding.weight[:, None, :].repeat(
                1, bs, 1).transpose(0, 1)
            reference_points = \
                self.refpoint_embedding.weight[:, None, :].repeat(1, bs, 1)

            if input_query_bbox is not None:
                reference_points = torch.cat(
                    [input_query_bbox, reference_points], dim=1)
                query = torch.cat([input_query_label, query], dim=1)
            reference_points = reference_points.sigmoid()

        decoder_inputs_dict = dict(
            query=query, reference_points=reference_points)
        head_inputs_dict = dict(
            hidden_states_enc=hidden_states_enc, referens_enc=referens_enc)
        return decoder_inputs_dict, head_inputs_dict

    def forward_decoder(self, memory: Tensor, memory_mask: Tensor,
                        spatial_shapes: Tensor, level_start_index: Tensor,
                        valid_ratios: Tensor, humandet_attn_mask: Tensor,
                        human2pose_attn_mask: Tensor, input_query_bbox: Tensor,
                        input_query_label: Tensor, mask_dict: Dict) -> Dict:
        """Forward with Transformer decoder.

        The forward procedure is defined as:
        'pre_decoder' -> 'decoder'

        Args:
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).
            humandet_attn_mask (Tensor): Human attention mask.
            human2pose_attn_mask (Tensor): Human to pose attention mask.
            input_query_bbox (Tensor): Denosing bbox query for training.
            input_query_label (Tensor): Denosing label query for training.

        Returns:
            dict: The dictionary of decoder outputs, which includes the
            `hidden_states` of the decoder output and `references` including
            the initial and intermediate reference_points.
        """
        decoder_in, head_in = self.pre_decoder(memory, memory_mask,
                                               spatial_shapes,
                                               input_query_bbox,
                                               input_query_label)

        inter_states, inter_references = self.decoder(
            query=decoder_in['query'].transpose(0, 1),
            value=memory.transpose(0, 1),
            key_padding_mask=memory_mask,  # for cross_attn
            reference_points=decoder_in['reference_points'].transpose(0, 1),
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            humandet_attn_mask=humandet_attn_mask,
            human2pose_attn_mask=human2pose_attn_mask)
        references = inter_references
        decoder_outputs_dict = dict(
            hidden_states=inter_states,
            references=references,
            mask_dict=mask_dict)
        decoder_outputs_dict.update(head_in)
        return decoder_outputs_dict

    def forward_out_head(self, batch_data_samples: OptSampleList,
                         hidden_states: List[Tensor], references: List[Tensor],
                         mask_dict: Dict, hidden_states_enc: Tensor,
                         referens_enc: Tensor) -> Tuple[Tensor]:
        """Forward function."""
        out = self.out_head(hidden_states, references, mask_dict,
                            hidden_states_enc, referens_enc,
                            batch_data_samples)
        return out

    def predict(self,
                feats: Features,
                batch_data_samples: OptSampleList,
                test_cfg: ConfigType = {}) -> Predictions:
        """Predict results from features."""
        input_shapes = np.array(
            [d.metainfo['input_size'] for d in batch_data_samples])

        if test_cfg.get('flip_test', False):
            assert NotImplementedError(
                'flip_test is currently not supported '
                'for EDPose. Please set `model.test_cfg.flip_test=False`')
        else:
            pred_logits, pred_boxes, pred_keypoints = self.forward(
                feats, batch_data_samples)  # (B, K, D)

            pred = self.decode(
                input_shapes,
                pred_logits=pred_logits,
                pred_boxes=pred_boxes,
                pred_keypoints=pred_keypoints)
        return pred

    def decode(self, input_shapes: np.ndarray, pred_logits: Tensor,
               pred_boxes: Tensor, pred_keypoints: Tensor):
        """Select the final top-k keypoints, and decode the results from
        normalize size to origin input size.

        Args:
            input_shapes (Tensor): The size of input image.
            pred_logits (Tensor): The result of score.
            pred_boxes (Tensor): The result of bbox.
            pred_keypoints (Tensor): The result of keypoints.

        Returns:
        """

        if self.data_decoder is None:
            raise RuntimeError(f'The data decoder has not been set in \
                {self.__class__.__name__}. '
                               'Please set the data decoder configs in \
                    the init parameters to '
                               'enable head methods `head.predict()` and \
                     `head.decode()`')

        preds = []

        pred_logits = pred_logits.sigmoid()
        pred_logits, pred_boxes, pred_keypoints = to_numpy(
            [pred_logits, pred_boxes, pred_keypoints])

        for input_shape, pred_logit, pred_bbox, pred_kpts in zip(
                input_shapes, pred_logits, pred_boxes, pred_keypoints):

            bboxes, keypoints, keypoint_scores = self.data_decoder.decode(
                input_shape, pred_logit, pred_bbox, pred_kpts)

            # pack outputs
            preds.append(
                InstanceData(
                    keypoints=keypoints,
                    keypoint_scores=keypoint_scores,
                    bboxes=bboxes))

        return preds

    def gen_encoder_output_proposals(self, memory: Tensor, memory_mask: Tensor,
                                     spatial_shapes: Tensor
                                     ) -> Tuple[Tensor, Tensor]:
        """Generate proposals from encoded memory. The function will only be
        used when `as_two_stage` is `True`.

        Args:
            memory (Tensor): The output embeddings of the Transformer encoder,
                has shape (bs, num_feat_points, dim).
            memory_mask (Tensor): ByteTensor, the padding mask of the memory,
                has shape (bs, num_feat_points).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).

        Returns:
            tuple: A tuple of transformed memory and proposals.

            - output_memory (Tensor): The transformed memory for obtaining
              top-k proposals, has shape (bs, num_feat_points, dim).
            - output_proposals (Tensor): The inverse-normalized proposal, has
              shape (batch_size, num_keys, 4) with the last dimension arranged
              as (cx, cy, w, h).
        """
        bs = memory.size(0)
        proposals = []
        _cur = 0  # start index in the sequence of the current level
        for lvl, (H, W) in enumerate(spatial_shapes):
            mask_flatten_ = memory_mask[:,
                                        _cur:(_cur + H * W)].view(bs, H, W, 1)
            valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1).unsqueeze(-1)
            valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1).unsqueeze(-1)

            grid_y, grid_x = torch.meshgrid(
                torch.linspace(
                    0, H - 1, H, dtype=torch.float32, device=memory.device),
                torch.linspace(
                    0, W - 1, W, dtype=torch.float32, device=memory.device))
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_W, valid_H], 1).view(bs, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(bs, -1, -1, -1) + 0.5) / scale
            wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
            proposal = torch.cat((grid, wh), -1).view(bs, -1, 4)
            proposals.append(proposal)
            _cur += (H * W)
        output_proposals = torch.cat(proposals, 1)
        output_proposals_valid = ((output_proposals > 0.01) &
                                  (output_proposals < 0.99)).all(
                                      -1, keepdim=True)

        output_proposals = inverse_sigmoid(output_proposals)
        output_proposals = output_proposals.masked_fill(
            memory_mask.unsqueeze(-1), float('inf'))
        output_proposals = output_proposals.masked_fill(
            ~output_proposals_valid, float('inf'))

        output_memory = memory
        output_memory = output_memory.masked_fill(
            memory_mask.unsqueeze(-1), float(0))
        output_memory = output_memory.masked_fill(~output_proposals_valid,
                                                  float(0))
        output_memory = self.memory_trans_fc(output_memory)
        output_memory = self.memory_trans_norm(output_memory)
        # [bs, sum(hw), 2]
        return output_memory, output_proposals

    @property
    def default_init_cfg(self):
        init_cfg = [dict(type='Normal', layer=['Linear'], std=0.01, bias=0)]
        return init_cfg

    def prepare_for_denosing(self, targets: OptSampleList, device):
        """prepare for dn components in forward function."""
        if not self.training:
            bs = len(targets)
            attn_mask_infere = torch.zeros(
                bs,
                self.num_heads,
                self.num_group * (self.num_keypoints + 1),
                self.num_group * (self.num_keypoints + 1),
                device=device,
                dtype=torch.bool)
            group_bbox_kpt = (self.num_keypoints + 1)
            kpt_index = [
                x for x in range(self.num_group * (self.num_keypoints + 1))
                if x % (self.num_keypoints + 1) == 0
            ]
            for matchj in range(self.num_group * (self.num_keypoints + 1)):
                sj = (matchj // group_bbox_kpt) * group_bbox_kpt
                ej = (matchj // group_bbox_kpt + 1) * group_bbox_kpt
                if sj > 0:
                    attn_mask_infere[:, :, matchj, :sj] = True
                if ej < self.num_group * (self.num_keypoints + 1):
                    attn_mask_infere[:, :, matchj, ej:] = True
            for match_x in range(self.num_group * (self.num_keypoints + 1)):
                if match_x % group_bbox_kpt == 0:
                    attn_mask_infere[:, :, match_x, kpt_index] = False

            attn_mask_infere = attn_mask_infere.flatten(0, 1)
            return None, None, None, attn_mask_infere, None

        # targets, dn_scalar, noise_scale = dn_args
        device = targets[0]['boxes'].device
        bs = len(targets)
        refine_queries_num = self.refine_queries_num

        # gather gt boxes and labels
        gt_boxes = [t['boxes'] for t in targets]
        gt_labels = [t['labels'] for t in targets]
        gt_keypoints = [t['keypoints'] for t in targets]

        # repeat them
        def get_indices_for_repeat(now_num, target_num, device='cuda'):
            """
            Input:
                - now_num: int
                - target_num: int
            Output:
                - indices: tensor[target_num]
            """
            out_indice = []
            base_indice = torch.arange(now_num).to(device)
            multiplier = target_num // now_num
            out_indice.append(base_indice.repeat(multiplier))
            residue = target_num % now_num
            out_indice.append(base_indice[torch.randint(
                0, now_num, (residue, ), device=device)])
            return torch.cat(out_indice)

        gt_boxes_expand = []
        gt_labels_expand = []
        gt_keypoints_expand = []
        for idx, (gt_boxes_i, gt_labels_i, gt_keypoint_i) in enumerate(
                zip(gt_boxes, gt_labels, gt_keypoints)):
            num_gt_i = gt_boxes_i.shape[0]
            if num_gt_i > 0:
                indices = get_indices_for_repeat(num_gt_i, refine_queries_num,
                                                 device)
                gt_boxes_expand_i = gt_boxes_i[indices]  # num_dn, 4
                gt_labels_expand_i = gt_labels_i[indices]
                gt_keypoints_expand_i = gt_keypoint_i[indices]
            else:
                # all negative samples when no gt boxes
                gt_boxes_expand_i = torch.rand(
                    refine_queries_num, 4, device=device)
                gt_labels_expand_i = torch.ones(
                    refine_queries_num, dtype=torch.int64,
                    device=device) * int(self.num_classes)
                gt_keypoints_expand_i = torch.rand(
                    refine_queries_num, self.num_keypoints * 3, device=device)
            gt_boxes_expand.append(gt_boxes_expand_i)
            gt_labels_expand.append(gt_labels_expand_i)
            gt_keypoints_expand.append(gt_keypoints_expand_i)
        gt_boxes_expand = torch.stack(gt_boxes_expand)
        gt_labels_expand = torch.stack(gt_labels_expand)
        gt_keypoints_expand = torch.stack(gt_keypoints_expand)
        knwon_boxes_expand = gt_boxes_expand.clone()
        knwon_labels_expand = gt_labels_expand.clone()

        # add noise
        if self.denosing_cfg['dn_label_noise_ratio'] > 0:
            prob = torch.rand_like(knwon_labels_expand.float())
            chosen_indice = prob < self.denosing_cfg['dn_label_noise_ratio']
            new_label = torch.randint_like(
                knwon_labels_expand[chosen_indice], 0,
                self.dn_labelbook_size)  # randomly put a new one here
            knwon_labels_expand[chosen_indice] = new_label

        if self.denosing_cfg['dn_box_noise_scale'] > 0:
            diff = torch.zeros_like(knwon_boxes_expand)
            diff[..., :2] = knwon_boxes_expand[..., 2:] / 2
            diff[..., 2:] = knwon_boxes_expand[..., 2:]
            knwon_boxes_expand += torch.mul(
                (torch.rand_like(knwon_boxes_expand) * 2 - 1.0),
                diff) * self.denosing_cfg['dn_box_noise_scale']
            knwon_boxes_expand = knwon_boxes_expand.clamp(min=0.0, max=1.0)

        input_query_label = self.label_enc(knwon_labels_expand)
        input_query_bbox = inverse_sigmoid(knwon_boxes_expand)

        # prepare mask
        if 'group2group' in self.denosing_cfg['dn_attn_mask_type_list']:
            attn_mask = torch.zeros(
                bs,
                self.num_heads,
                refine_queries_num + self.num_queries,
                refine_queries_num + self.num_queries,
                device=device,
                dtype=torch.bool)
            attn_mask[:, :, refine_queries_num:, :refine_queries_num] = True
            for idx, (gt_boxes_i,
                      gt_labels_i) in enumerate(zip(gt_boxes, gt_labels)):
                num_gt_i = gt_boxes_i.shape[0]
                if num_gt_i == 0:
                    continue
                for matchi in range(refine_queries_num):
                    si = (matchi // num_gt_i) * num_gt_i
                    ei = (matchi // num_gt_i + 1) * num_gt_i
                    if si > 0:
                        attn_mask[idx, :, matchi, :si] = True
                    if ei < refine_queries_num:
                        attn_mask[idx, :, matchi, ei:refine_queries_num] = True
            attn_mask = attn_mask.flatten(0, 1)

        if 'group2group' in self.denosing_cfg['dn_attn_mask_type_list']:
            attn_mask2 = torch.zeros(
                bs,
                self.num_heads,
                refine_queries_num + self.num_group * (self.num_keypoints + 1),
                refine_queries_num + self.num_group * (self.num_keypoints + 1),
                device=device,
                dtype=torch.bool)
            attn_mask2[:, :, refine_queries_num:, :refine_queries_num] = True
            group_bbox_kpt = (self.num_keypoints + 1)
            kpt_index = [
                x for x in range(self.num_group * (self.num_keypoints + 1))
                if x % (self.num_keypoints + 1) == 0
            ]
            for matchj in range(self.num_group * (self.num_keypoints + 1)):
                sj = (matchj // group_bbox_kpt) * group_bbox_kpt
                ej = (matchj // group_bbox_kpt + 1) * group_bbox_kpt
                if sj > 0:
                    attn_mask2[:, :, refine_queries_num:,
                               refine_queries_num:][:, :, matchj, :sj] = True
                if ej < self.num_group * (self.num_keypoints + 1):
                    attn_mask2[:, :, refine_queries_num:,
                               refine_queries_num:][:, :, matchj, ej:] = True

            for match_x in range(self.num_group * (self.num_keypoints + 1)):
                if match_x % group_bbox_kpt == 0:
                    attn_mask2[:, :, refine_queries_num:,
                               refine_queries_num:][:, :, match_x,
                                                    kpt_index] = False

            for idx, (gt_boxes_i,
                      gt_labels_i) in enumerate(zip(gt_boxes, gt_labels)):
                num_gt_i = gt_boxes_i.shape[0]
                if num_gt_i == 0:
                    continue
                for matchi in range(refine_queries_num):
                    si = (matchi // num_gt_i) * num_gt_i
                    ei = (matchi // num_gt_i + 1) * num_gt_i
                    if si > 0:
                        attn_mask2[idx, :, matchi, :si] = True
                    if ei < refine_queries_num:
                        attn_mask2[idx, :, matchi,
                                   ei:refine_queries_num] = True
            attn_mask2 = attn_mask2.flatten(0, 1)

        mask_dict = {
            'pad_size': refine_queries_num,
            'known_bboxs': gt_boxes_expand,
            'known_labels': gt_labels_expand,
            'known_keypoints': gt_keypoints_expand
        }

        return input_query_label, input_query_bbox, \
            attn_mask, attn_mask2, mask_dict

    def loss(self,
             feats: Tuple[Tensor],
             batch_data_samples: OptSampleList,
             train_cfg: OptConfigType = {}) -> dict:
        """Calculate losses from a batch of inputs and data samples."""

        assert NotImplementedError(
            'the training of EDPose has not been '
            'supported. Please stay tuned for further update.')