Spaces:
Running
on
Zero
Running
on
Zero
File size: 62,355 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 |
# ----------------------------------------------------------------------------
# Adapted from https://github.com/IDEA-Research/ED-Pose/ \
# tree/master/models/edpose
# Original licence: IDEA License 1.0
# ----------------------------------------------------------------------------
import copy
import math
from typing import Dict, List, Tuple
import numpy as np
import torch
import torch.nn.functional as F
from mmcv.ops import MultiScaleDeformableAttention
from mmengine.model import BaseModule, ModuleList, constant_init
from mmengine.structures import InstanceData
from torch import Tensor, nn
from mmpose.models.utils import inverse_sigmoid
from mmpose.registry import KEYPOINT_CODECS, MODELS
from mmpose.utils.tensor_utils import to_numpy
from mmpose.utils.typing import (ConfigType, Features, OptConfigType,
OptSampleList, Predictions)
from .base_transformer_head import TransformerHead
from .transformers.deformable_detr_layers import (
DeformableDetrTransformerDecoderLayer, DeformableDetrTransformerEncoder)
from .transformers.utils import FFN, PositionEmbeddingSineHW
class EDPoseDecoder(BaseModule):
"""Transformer decoder of EDPose: `Explicit Box Detection Unifies End-to-
End Multi-Person Pose Estimation.
Args:
layer_cfg (ConfigDict): the config of each encoder
layer. All the layers will share the same config.
num_layers (int): Number of decoder layers.
return_intermediate (bool, optional): Whether to return outputs of
intermediate layers. Defaults to `True`.
embed_dims (int): Dims of embed.
query_dim (int): Dims of queries.
num_feature_levels (int): Number of feature levels.
num_box_decoder_layers (int): Number of box decoder layers.
num_keypoints (int): Number of datasets' body keypoints.
num_dn (int): Number of denosing points.
num_group (int): Number of decoder layers.
"""
def __init__(self,
layer_cfg,
num_layers,
return_intermediate,
embed_dims: int = 256,
query_dim=4,
num_feature_levels=1,
num_box_decoder_layers=2,
num_keypoints=17,
num_dn=100,
num_group=100):
super().__init__()
self.layer_cfg = layer_cfg
self.num_layers = num_layers
self.embed_dims = embed_dims
assert return_intermediate, 'support return_intermediate only'
self.return_intermediate = return_intermediate
assert query_dim in [
2, 4
], 'query_dim should be 2/4 but {}'.format(query_dim)
self.query_dim = query_dim
self.num_feature_levels = num_feature_levels
self.layers = ModuleList([
DeformableDetrTransformerDecoderLayer(**self.layer_cfg)
for _ in range(self.num_layers)
])
self.norm = nn.LayerNorm(self.embed_dims)
self.ref_point_head = FFN(self.query_dim // 2 * self.embed_dims,
self.embed_dims, self.embed_dims, 2)
self.num_keypoints = num_keypoints
self.query_scale = None
self.bbox_embed = None
self.class_embed = None
self.pose_embed = None
self.pose_hw_embed = None
self.num_box_decoder_layers = num_box_decoder_layers
self.box_pred_damping = None
self.num_group = num_group
self.rm_detach = None
self.num_dn = num_dn
self.hw = nn.Embedding(self.num_keypoints, 2)
self.keypoint_embed = nn.Embedding(self.num_keypoints, embed_dims)
self.kpt_index = [
x for x in range(self.num_group * (self.num_keypoints + 1))
if x % (self.num_keypoints + 1) != 0
]
def forward(self, query: Tensor, value: Tensor, key_padding_mask: Tensor,
reference_points: Tensor, spatial_shapes: Tensor,
level_start_index: Tensor, valid_ratios: Tensor,
humandet_attn_mask: Tensor, human2pose_attn_mask: Tensor,
**kwargs) -> Tuple[Tensor]:
"""Forward function of decoder
Args:
query (Tensor): The input queries, has shape (bs, num_queries,
dim).
value (Tensor): The input values, has shape (bs, num_value, dim).
key_padding_mask (Tensor): The `key_padding_mask` of `cross_attn`
input. ByteTensor, has shape (bs, num_value).
reference_points (Tensor): The initial reference, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h) when `as_two_stage` is `True`, otherwise has
shape (bs, num_queries, 2) with the last dimension arranged
as (cx, cy).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
reg_branches: (obj:`nn.ModuleList`, optional): Used for refining
the regression results.
Returns:
Tuple[Tuple[Tensor]]: Outputs of Deformable Transformer Decoder.
- output (Tuple[Tensor]): Output embeddings of the last decoder,
each has shape (num_decoder_layers, num_queries, bs, embed_dims)
- reference_points (Tensor): The reference of the last decoder
layer, each has shape (num_decoder_layers, bs, num_queries, 4).
The coordinates are arranged as (cx, cy, w, h)
"""
output = query
attn_mask = humandet_attn_mask
intermediate = []
intermediate_reference_points = [reference_points]
effect_num_dn = self.num_dn if self.training else 0
inter_select_number = self.num_group
for layer_id, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = \
reference_points[:, :, None] * \
torch.cat([valid_ratios, valid_ratios], -1)[None, :]
else:
assert reference_points.shape[-1] == 2
reference_points_input = \
reference_points[:, :, None] * \
valid_ratios[None, :]
query_sine_embed = self.get_proposal_pos_embed(
reference_points_input[:, :, 0, :]) # nq, bs, 256*2
query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
output = layer(
output.transpose(0, 1),
query_pos=query_pos.transpose(0, 1),
value=value.transpose(0, 1),
key_padding_mask=key_padding_mask,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
reference_points=reference_points_input.transpose(
0, 1).contiguous(),
self_attn_mask=attn_mask,
**kwargs)
output = output.transpose(0, 1)
intermediate.append(self.norm(output))
# human update
if layer_id < self.num_box_decoder_layers:
delta_unsig = self.bbox_embed[layer_id](output)
new_reference_points = delta_unsig + inverse_sigmoid(
reference_points)
new_reference_points = new_reference_points.sigmoid()
# query expansion
if layer_id == self.num_box_decoder_layers - 1:
dn_output = output[:effect_num_dn]
dn_new_reference_points = new_reference_points[:effect_num_dn]
class_unselected = self.class_embed[layer_id](
output)[effect_num_dn:]
topk_proposals = torch.topk(
class_unselected.max(-1)[0], inter_select_number, dim=0)[1]
new_reference_points_for_box = torch.gather(
new_reference_points[effect_num_dn:], 0,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
new_output_for_box = torch.gather(
output[effect_num_dn:], 0,
topk_proposals.unsqueeze(-1).repeat(1, 1, self.embed_dims))
bs = new_output_for_box.shape[1]
new_output_for_keypoint = new_output_for_box[:, None, :, :] \
+ self.keypoint_embed.weight[None, :, None, :]
if self.num_keypoints == 17:
delta_xy = self.pose_embed[-1](new_output_for_keypoint)[
..., :2]
else:
delta_xy = self.pose_embed[0](new_output_for_keypoint)[
..., :2]
keypoint_xy = (inverse_sigmoid(
new_reference_points_for_box[..., :2][:, None]) +
delta_xy).sigmoid()
num_queries, _, bs, _ = keypoint_xy.shape
keypoint_wh_weight = self.hw.weight.unsqueeze(0).unsqueeze(
-2).repeat(num_queries, 1, bs, 1).sigmoid()
keypoint_wh = keypoint_wh_weight * \
new_reference_points_for_box[..., 2:][:, None]
new_reference_points_for_keypoint = torch.cat(
(keypoint_xy, keypoint_wh), dim=-1)
new_reference_points = torch.cat(
(new_reference_points_for_box.unsqueeze(1),
new_reference_points_for_keypoint),
dim=1).flatten(0, 1)
output = torch.cat(
(new_output_for_box.unsqueeze(1), new_output_for_keypoint),
dim=1).flatten(0, 1)
new_reference_points = torch.cat(
(dn_new_reference_points, new_reference_points), dim=0)
output = torch.cat((dn_output, output), dim=0)
attn_mask = human2pose_attn_mask
# human-to-keypoints update
if layer_id >= self.num_box_decoder_layers:
effect_num_dn = self.num_dn if self.training else 0
inter_select_number = self.num_group
ref_before_sigmoid = inverse_sigmoid(reference_points)
output_bbox_dn = output[:effect_num_dn]
output_bbox_norm = output[effect_num_dn:][0::(
self.num_keypoints + 1)]
ref_before_sigmoid_bbox_dn = \
ref_before_sigmoid[:effect_num_dn]
ref_before_sigmoid_bbox_norm = \
ref_before_sigmoid[effect_num_dn:][0::(
self.num_keypoints + 1)]
delta_unsig_dn = self.bbox_embed[layer_id](output_bbox_dn)
delta_unsig_norm = self.bbox_embed[layer_id](output_bbox_norm)
outputs_unsig_dn = delta_unsig_dn + ref_before_sigmoid_bbox_dn
outputs_unsig_norm = delta_unsig_norm + \
ref_before_sigmoid_bbox_norm
new_reference_points_for_box_dn = outputs_unsig_dn.sigmoid()
new_reference_points_for_box_norm = outputs_unsig_norm.sigmoid(
)
output_kpt = output[effect_num_dn:].index_select(
0, torch.tensor(self.kpt_index, device=output.device))
delta_xy_unsig = self.pose_embed[layer_id -
self.num_box_decoder_layers](
output_kpt)
outputs_unsig = ref_before_sigmoid[
effect_num_dn:].index_select(
0, torch.tensor(self.kpt_index,
device=output.device)).clone()
delta_hw_unsig = self.pose_hw_embed[
layer_id - self.num_box_decoder_layers](
output_kpt)
outputs_unsig[..., :2] += delta_xy_unsig[..., :2]
outputs_unsig[..., 2:] += delta_hw_unsig
new_reference_points_for_keypoint = outputs_unsig.sigmoid()
bs = new_reference_points_for_box_norm.shape[1]
new_reference_points_norm = torch.cat(
(new_reference_points_for_box_norm.unsqueeze(1),
new_reference_points_for_keypoint.view(
-1, self.num_keypoints, bs, 4)),
dim=1).flatten(0, 1)
new_reference_points = torch.cat(
(new_reference_points_for_box_dn,
new_reference_points_norm),
dim=0)
reference_points = new_reference_points.detach()
intermediate_reference_points.append(reference_points)
decoder_outputs = [itm_out.transpose(0, 1) for itm_out in intermediate]
reference_points = [
itm_refpoint.transpose(0, 1)
for itm_refpoint in intermediate_reference_points
]
return decoder_outputs, reference_points
@staticmethod
def get_proposal_pos_embed(pos_tensor: Tensor,
temperature: int = 10000,
num_pos_feats: int = 128) -> Tensor:
"""Get the position embedding of the proposal.
Args:
pos_tensor (Tensor): Not normalized proposals, has shape
(bs, num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
temperature (int, optional): The temperature used for scaling the
position embedding. Defaults to 10000.
num_pos_feats (int, optional): The feature dimension for each
position along x, y, w, and h-axis. Note the final returned
dimension for each position is 4 times of num_pos_feats.
Default to 128.
Returns:
Tensor: The position embedding of proposal, has shape
(bs, num_queries, num_pos_feats * 4), with the last dimension
arranged as (cx, cy, w, h)
"""
scale = 2 * math.pi
dim_t = torch.arange(
num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
x_embed = pos_tensor[:, :, 0] * scale
y_embed = pos_tensor[:, :, 1] * scale
pos_x = x_embed[:, :, None] / dim_t
pos_y = y_embed[:, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()),
dim=3).flatten(2)
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()),
dim=3).flatten(2)
if pos_tensor.size(-1) == 2:
pos = torch.cat((pos_y, pos_x), dim=2)
elif pos_tensor.size(-1) == 4:
w_embed = pos_tensor[:, :, 2] * scale
pos_w = w_embed[:, :, None] / dim_t
pos_w = torch.stack(
(pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()),
dim=3).flatten(2)
h_embed = pos_tensor[:, :, 3] * scale
pos_h = h_embed[:, :, None] / dim_t
pos_h = torch.stack(
(pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()),
dim=3).flatten(2)
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
else:
raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
pos_tensor.size(-1)))
return pos
class EDPoseOutHead(BaseModule):
"""Final Head of EDPose: `Explicit Box Detection Unifies End-to-End Multi-
Person Pose Estimation.
Args:
num_classes (int): The number of classes.
num_keypoints (int): The number of datasets' body keypoints.
num_queries (int): The number of queries.
cls_no_bias (bool): Weather add the bias to class embed.
embed_dims (int): The dims of embed.
as_two_stage (bool, optional): Whether to generate the proposal
from the outputs of encoder. Defaults to `False`.
refine_queries_num (int): The number of refines queries after
decoders.
num_box_decoder_layers (int): The number of bbox decoder layer.
num_group (int): The number of groups.
num_pred_layer (int): The number of the prediction layers.
Defaults to 6.
dec_pred_class_embed_share (bool): Whether to share parameters
for all the class prediction layers. Defaults to `False`.
dec_pred_bbox_embed_share (bool): Whether to share parameters
for all the bbox prediction layers. Defaults to `False`.
dec_pred_pose_embed_share (bool): Whether to share parameters
for all the pose prediction layers. Defaults to `False`.
"""
def __init__(self,
num_classes,
num_keypoints: int = 17,
num_queries: int = 900,
cls_no_bias: bool = False,
embed_dims: int = 256,
as_two_stage: bool = False,
refine_queries_num: int = 100,
num_box_decoder_layers: int = 2,
num_group: int = 100,
num_pred_layer: int = 6,
dec_pred_class_embed_share: bool = False,
dec_pred_bbox_embed_share: bool = False,
dec_pred_pose_embed_share: bool = False,
**kwargs):
super().__init__()
self.embed_dims = embed_dims
self.as_two_stage = as_two_stage
self.num_classes = num_classes
self.refine_queries_num = refine_queries_num
self.num_box_decoder_layers = num_box_decoder_layers
self.num_keypoints = num_keypoints
self.num_queries = num_queries
# prepare pred layers
self.dec_pred_class_embed_share = dec_pred_class_embed_share
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
self.dec_pred_pose_embed_share = dec_pred_pose_embed_share
# prepare class & box embed
_class_embed = nn.Linear(
self.embed_dims, self.num_classes, bias=(not cls_no_bias))
if not cls_no_bias:
prior_prob = 0.01
bias_value = -math.log((1 - prior_prob) / prior_prob)
_class_embed.bias.data = torch.ones(self.num_classes) * bias_value
_bbox_embed = FFN(self.embed_dims, self.embed_dims, 4, 3)
_pose_embed = FFN(self.embed_dims, self.embed_dims, 2, 3)
_pose_hw_embed = FFN(self.embed_dims, self.embed_dims, 2, 3)
self.num_group = num_group
if dec_pred_bbox_embed_share:
box_embed_layerlist = [_bbox_embed for i in range(num_pred_layer)]
else:
box_embed_layerlist = [
copy.deepcopy(_bbox_embed) for i in range(num_pred_layer)
]
if dec_pred_class_embed_share:
class_embed_layerlist = [
_class_embed for i in range(num_pred_layer)
]
else:
class_embed_layerlist = [
copy.deepcopy(_class_embed) for i in range(num_pred_layer)
]
if num_keypoints == 17:
if dec_pred_pose_embed_share:
pose_embed_layerlist = [
_pose_embed
for i in range(num_pred_layer - num_box_decoder_layers + 1)
]
else:
pose_embed_layerlist = [
copy.deepcopy(_pose_embed)
for i in range(num_pred_layer - num_box_decoder_layers + 1)
]
else:
if dec_pred_pose_embed_share:
pose_embed_layerlist = [
_pose_embed
for i in range(num_pred_layer - num_box_decoder_layers)
]
else:
pose_embed_layerlist = [
copy.deepcopy(_pose_embed)
for i in range(num_pred_layer - num_box_decoder_layers)
]
pose_hw_embed_layerlist = [
_pose_hw_embed
for i in range(num_pred_layer - num_box_decoder_layers)
]
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
self.class_embed = nn.ModuleList(class_embed_layerlist)
self.pose_embed = nn.ModuleList(pose_embed_layerlist)
self.pose_hw_embed = nn.ModuleList(pose_hw_embed_layerlist)
def init_weights(self) -> None:
"""Initialize weights of the Deformable DETR head."""
for m in self.bbox_embed:
constant_init(m[-1], 0, bias=0)
for m in self.pose_embed:
constant_init(m[-1], 0, bias=0)
def forward(self, hidden_states: List[Tensor], references: List[Tensor],
mask_dict: Dict, hidden_states_enc: Tensor,
referens_enc: Tensor, batch_data_samples) -> Dict:
"""Forward function.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries, dim).
references (list[Tensor]): List of the reference from the decoder.
Returns:
tuple[Tensor]: results of head containing the following tensor.
- pred_logits (Tensor): Outputs from the
classification head, the socres of every bboxes.
- pred_boxes (Tensor): The output boxes.
- pred_keypoints (Tensor): The output keypoints.
"""
# update human boxes
effec_dn_num = self.refine_queries_num if self.training else 0
outputs_coord_list = []
outputs_class = []
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_cls_embed,
layer_hs) in enumerate(
zip(references[:-1], self.bbox_embed,
self.class_embed, hidden_states)):
if dec_lid < self.num_box_decoder_layers:
layer_delta_unsig = layer_bbox_embed(layer_hs)
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(
layer_ref_sig)
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
layer_cls = layer_cls_embed(layer_hs)
outputs_coord_list.append(layer_outputs_unsig)
outputs_class.append(layer_cls)
else:
layer_hs_bbox_dn = layer_hs[:, :effec_dn_num, :]
layer_hs_bbox_norm = \
layer_hs[:, effec_dn_num:, :][:, 0::(
self.num_keypoints + 1), :]
bs = layer_ref_sig.shape[0]
ref_before_sigmoid_bbox_dn = \
layer_ref_sig[:, : effec_dn_num, :]
ref_before_sigmoid_bbox_norm = \
layer_ref_sig[:, effec_dn_num:, :][:, 0::(
self.num_keypoints + 1), :]
layer_delta_unsig_dn = layer_bbox_embed(layer_hs_bbox_dn)
layer_delta_unsig_norm = layer_bbox_embed(layer_hs_bbox_norm)
layer_outputs_unsig_dn = layer_delta_unsig_dn + \
inverse_sigmoid(ref_before_sigmoid_bbox_dn)
layer_outputs_unsig_dn = layer_outputs_unsig_dn.sigmoid()
layer_outputs_unsig_norm = layer_delta_unsig_norm + \
inverse_sigmoid(ref_before_sigmoid_bbox_norm)
layer_outputs_unsig_norm = layer_outputs_unsig_norm.sigmoid()
layer_outputs_unsig = torch.cat(
(layer_outputs_unsig_dn, layer_outputs_unsig_norm), dim=1)
layer_cls_dn = layer_cls_embed(layer_hs_bbox_dn)
layer_cls_norm = layer_cls_embed(layer_hs_bbox_norm)
layer_cls = torch.cat((layer_cls_dn, layer_cls_norm), dim=1)
outputs_class.append(layer_cls)
outputs_coord_list.append(layer_outputs_unsig)
# update keypoints boxes
outputs_keypoints_list = []
kpt_index = [
x for x in range(self.num_group * (self.num_keypoints + 1))
if x % (self.num_keypoints + 1) != 0
]
for dec_lid, (layer_ref_sig, layer_hs) in enumerate(
zip(references[:-1], hidden_states)):
if dec_lid < self.num_box_decoder_layers:
assert isinstance(layer_hs, torch.Tensor)
bs = layer_hs.shape[0]
layer_res = layer_hs.new_zeros(
(bs, self.num_queries, self.num_keypoints * 3))
outputs_keypoints_list.append(layer_res)
else:
bs = layer_ref_sig.shape[0]
layer_hs_kpt = \
layer_hs[:, effec_dn_num:, :].index_select(
1, torch.tensor(kpt_index, device=layer_hs.device))
delta_xy_unsig = self.pose_embed[dec_lid -
self.num_box_decoder_layers](
layer_hs_kpt)
layer_ref_sig_kpt = \
layer_ref_sig[:, effec_dn_num:, :].index_select(
1, torch.tensor(kpt_index, device=layer_hs.device))
layer_outputs_unsig_keypoints = delta_xy_unsig + \
inverse_sigmoid(layer_ref_sig_kpt[..., :2])
vis_xy_unsig = torch.ones_like(
layer_outputs_unsig_keypoints,
device=layer_outputs_unsig_keypoints.device)
xyv = torch.cat((layer_outputs_unsig_keypoints,
vis_xy_unsig[:, :, 0].unsqueeze(-1)),
dim=-1)
xyv = xyv.sigmoid()
layer_res = xyv.reshape(
(bs, self.num_group, self.num_keypoints, 3)).flatten(2, 3)
layer_res = self.keypoint_xyzxyz_to_xyxyzz(layer_res)
outputs_keypoints_list.append(layer_res)
dn_mask_dict = mask_dict
if self.refine_queries_num > 0 and dn_mask_dict is not None:
outputs_class, outputs_coord_list, outputs_keypoints_list = \
self.dn_post_process2(
outputs_class, outputs_coord_list,
outputs_keypoints_list, dn_mask_dict
)
for _out_class, _out_bbox, _out_keypoint in zip(
outputs_class, outputs_coord_list, outputs_keypoints_list):
assert _out_class.shape[1] == \
_out_bbox.shape[1] == _out_keypoint.shape[1]
return outputs_class[-1], outputs_coord_list[
-1], outputs_keypoints_list[-1]
def keypoint_xyzxyz_to_xyxyzz(self, keypoints: torch.Tensor):
"""
Args:
keypoints (torch.Tensor): ..., 51
"""
res = torch.zeros_like(keypoints)
num_points = keypoints.shape[-1] // 3
res[..., 0:2 * num_points:2] = keypoints[..., 0::3]
res[..., 1:2 * num_points:2] = keypoints[..., 1::3]
res[..., 2 * num_points:] = keypoints[..., 2::3]
return res
@MODELS.register_module()
class EDPoseHead(TransformerHead):
"""Head introduced in `Explicit Box Detection Unifies End-to-End Multi-
Person Pose Estimation`_ by J Yang1 et al (2023). The head is composed of
Encoder, Decoder and Out_head.
Code is modified from the `official github repo
<https://github.com/IDEA-Research/ED-Pose>`_.
More details can be found in the `paper
<https://arxiv.org/pdf/2302.01593.pdf>`_ .
Args:
num_queries (int): Number of query in Transformer.
num_feature_levels (int): Number of feature levels. Defaults to 4.
num_keypoints (int): Number of keypoints. Defaults to 4.
as_two_stage (bool, optional): Whether to generate the proposal
from the outputs of encoder. Defaults to `False`.
encoder (:obj:`ConfigDict` or dict, optional): Config of the
Transformer encoder. Defaults to None.
decoder (:obj:`ConfigDict` or dict, optional): Config of the
Transformer decoder. Defaults to None.
out_head (:obj:`ConfigDict` or dict, optional): Config for the
bounding final out head module. Defaults to None.
positional_encoding (:obj:`ConfigDict` or dict): Config for
transformer position encoding. Defaults None.
denosing_cfg (:obj:`ConfigDict` or dict, optional): Config of the
human query denoising training strategy.
data_decoder (:obj:`ConfigDict` or dict, optional): Config of the
data decoder which transform the results from output space to
input space.
dec_pred_class_embed_share (bool): Whether to share the class embed
layer. Default False.
dec_pred_bbox_embed_share (bool): Whether to share the bbox embed
layer. Default False.
refine_queries_num (int): Number of refined human content queries
and their position queries .
two_stage_keep_all_tokens (bool): Whether to keep all tokens.
"""
def __init__(self,
num_queries: int = 100,
num_feature_levels: int = 4,
num_keypoints: int = 17,
as_two_stage: bool = False,
encoder: OptConfigType = None,
decoder: OptConfigType = None,
out_head: OptConfigType = None,
positional_encoding: OptConfigType = None,
data_decoder: OptConfigType = None,
denosing_cfg: OptConfigType = None,
dec_pred_class_embed_share: bool = False,
dec_pred_bbox_embed_share: bool = False,
refine_queries_num: int = 100,
two_stage_keep_all_tokens: bool = False) -> None:
self.as_two_stage = as_two_stage
self.num_feature_levels = num_feature_levels
self.refine_queries_num = refine_queries_num
self.dec_pred_class_embed_share = dec_pred_class_embed_share
self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
self.two_stage_keep_all_tokens = two_stage_keep_all_tokens
self.num_heads = decoder['layer_cfg']['self_attn_cfg']['num_heads']
self.num_group = decoder['num_group']
self.num_keypoints = num_keypoints
self.denosing_cfg = denosing_cfg
if data_decoder is not None:
self.data_decoder = KEYPOINT_CODECS.build(data_decoder)
else:
self.data_decoder = None
super().__init__(
encoder=encoder,
decoder=decoder,
out_head=out_head,
positional_encoding=positional_encoding,
num_queries=num_queries)
self.positional_encoding = PositionEmbeddingSineHW(
**self.positional_encoding_cfg)
self.encoder = DeformableDetrTransformerEncoder(**self.encoder_cfg)
self.decoder = EDPoseDecoder(
num_keypoints=num_keypoints, **self.decoder_cfg)
self.out_head = EDPoseOutHead(
num_keypoints=num_keypoints,
as_two_stage=as_two_stage,
refine_queries_num=refine_queries_num,
**self.out_head_cfg,
**self.decoder_cfg)
self.embed_dims = self.encoder.embed_dims
self.label_enc = nn.Embedding(
self.denosing_cfg['dn_labelbook_size'] + 1, self.embed_dims)
if not self.as_two_stage:
self.query_embedding = nn.Embedding(self.num_queries,
self.embed_dims)
self.refpoint_embedding = nn.Embedding(self.num_queries, 4)
self.level_embed = nn.Parameter(
torch.Tensor(self.num_feature_levels, self.embed_dims))
self.decoder.bbox_embed = self.out_head.bbox_embed
self.decoder.pose_embed = self.out_head.pose_embed
self.decoder.pose_hw_embed = self.out_head.pose_hw_embed
self.decoder.class_embed = self.out_head.class_embed
if self.as_two_stage:
self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims)
self.memory_trans_norm = nn.LayerNorm(self.embed_dims)
if dec_pred_class_embed_share and dec_pred_bbox_embed_share:
self.enc_out_bbox_embed = self.out_head.bbox_embed[0]
else:
self.enc_out_bbox_embed = copy.deepcopy(
self.out_head.bbox_embed[0])
if dec_pred_class_embed_share and dec_pred_bbox_embed_share:
self.enc_out_class_embed = self.out_head.class_embed[0]
else:
self.enc_out_class_embed = copy.deepcopy(
self.out_head.class_embed[0])
def init_weights(self) -> None:
"""Initialize weights for Transformer and other components."""
super().init_weights()
for coder in self.encoder, self.decoder:
for p in coder.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MultiScaleDeformableAttention):
m.init_weights()
if self.as_two_stage:
nn.init.xavier_uniform_(self.memory_trans_fc.weight)
nn.init.normal_(self.level_embed)
def pre_transformer(self,
img_feats: Tuple[Tensor],
batch_data_samples: OptSampleList = None
) -> Tuple[Dict]:
"""Process image features before feeding them to the transformer.
Args:
img_feats (tuple[Tensor]): Multi-level features that may have
different resolutions, output from neck. Each feature has
shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'.
batch_data_samples (list[:obj:`DetDataSample`], optional): The
batch data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Defaults to None.
Returns:
tuple[dict]: The first dict contains the inputs of encoder and the
second dict contains the inputs of decoder.
- encoder_inputs_dict (dict): The keyword args dictionary of
`self.encoder()`.
- decoder_inputs_dict (dict): The keyword args dictionary of
`self.forward_decoder()`, which includes 'memory_mask'.
"""
batch_size = img_feats[0].size(0)
# construct binary masks for the transformer.
assert batch_data_samples is not None
batch_input_shape = batch_data_samples[0].batch_input_shape
img_shape_list = [sample.img_shape for sample in batch_data_samples]
input_img_h, input_img_w = batch_input_shape
masks = img_feats[0].new_ones((batch_size, input_img_h, input_img_w))
for img_id in range(batch_size):
img_h, img_w = img_shape_list[img_id]
masks[img_id, :img_h, :img_w] = 0
# NOTE following the official DETR repo, non-zero values representing
# ignored positions, while zero values means valid positions.
mlvl_masks = []
mlvl_pos_embeds = []
for feat in img_feats:
mlvl_masks.append(
F.interpolate(masks[None],
size=feat.shape[-2:]).to(torch.bool).squeeze(0))
mlvl_pos_embeds.append(self.positional_encoding(mlvl_masks[-1]))
feat_flatten = []
lvl_pos_embed_flatten = []
mask_flatten = []
spatial_shapes = []
for lvl, (feat, mask, pos_embed) in enumerate(
zip(img_feats, mlvl_masks, mlvl_pos_embeds)):
batch_size, c, h, w = feat.shape
# [bs, c, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl, c]
feat = feat.view(batch_size, c, -1).permute(0, 2, 1)
pos_embed = pos_embed.view(batch_size, c, -1).permute(0, 2, 1)
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
# [bs, h_lvl, w_lvl] -> [bs, h_lvl*w_lvl]
mask = mask.flatten(1)
spatial_shape = (h, w)
feat_flatten.append(feat)
lvl_pos_embed_flatten.append(lvl_pos_embed)
mask_flatten.append(mask)
spatial_shapes.append(spatial_shape)
# (bs, num_feat_points, dim)
feat_flatten = torch.cat(feat_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
# (bs, num_feat_points), where num_feat_points = sum_lvl(h_lvl*w_lvl)
mask_flatten = torch.cat(mask_flatten, 1)
spatial_shapes = torch.as_tensor( # (num_level, 2)
spatial_shapes,
dtype=torch.long,
device=feat_flatten.device)
level_start_index = torch.cat((
spatial_shapes.new_zeros((1, )), # (num_level)
spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack( # (bs, num_level, 2)
[self.get_valid_ratio(m) for m in mlvl_masks], 1)
if self.refine_queries_num > 0 or batch_data_samples is not None:
input_query_label, input_query_bbox, humandet_attn_mask, \
human2pose_attn_mask, mask_dict =\
self.prepare_for_denosing(
batch_data_samples,
device=img_feats[0].device)
else:
assert batch_data_samples is None
input_query_bbox = input_query_label = \
humandet_attn_mask = human2pose_attn_mask = mask_dict = None
encoder_inputs_dict = dict(
query=feat_flatten,
query_pos=lvl_pos_embed_flatten,
key_padding_mask=mask_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios)
decoder_inputs_dict = dict(
memory_mask=mask_flatten,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
humandet_attn_mask=humandet_attn_mask,
human2pose_attn_mask=human2pose_attn_mask,
input_query_bbox=input_query_bbox,
input_query_label=input_query_label,
mask_dict=mask_dict)
return encoder_inputs_dict, decoder_inputs_dict
def forward_encoder(self,
img_feats: Tuple[Tensor],
batch_data_samples: OptSampleList = None) -> Dict:
"""Forward with Transformer encoder.
The forward procedure is defined as:
'pre_transformer' -> 'encoder'
Args:
img_feats (tuple[Tensor]): Multi-level features that may have
different resolutions, output from neck. Each feature has
shape (bs, dim, h_lvl, w_lvl), where 'lvl' means 'layer'.
batch_data_samples (list[:obj:`DetDataSample`], optional): The
batch data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Defaults to None.
Returns:
dict: The dictionary of encoder outputs, which includes the
`memory` of the encoder output.
"""
encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer(
img_feats, batch_data_samples)
memory = self.encoder(**encoder_inputs_dict)
encoder_outputs_dict = dict(memory=memory, **decoder_inputs_dict)
return encoder_outputs_dict
def pre_decoder(self, memory: Tensor, memory_mask: Tensor,
spatial_shapes: Tensor, input_query_bbox: Tensor,
input_query_label: Tensor) -> Tuple[Dict, Dict]:
"""Prepare intermediate variables before entering Transformer decoder,
such as `query` and `reference_points`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points). It will only be used when
`as_two_stage` is `True`.
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
It will only be used when `as_two_stage` is `True`.
input_query_bbox (Tensor): Denosing bbox query for training.
input_query_label (Tensor): Denosing label query for training.
Returns:
tuple[dict, dict]: The decoder_inputs_dict and head_inputs_dict.
- decoder_inputs_dict (dict): The keyword dictionary args of
`self.decoder()`.
- head_inputs_dict (dict): The keyword dictionary args of the
bbox_head functions.
"""
bs, _, c = memory.shape
if self.as_two_stage:
output_memory, output_proposals = \
self.gen_encoder_output_proposals(
memory, memory_mask, spatial_shapes)
enc_outputs_class = self.enc_out_class_embed(output_memory)
enc_outputs_coord_unact = self.enc_out_bbox_embed(
output_memory) + output_proposals
topk_proposals = torch.topk(
enc_outputs_class.max(-1)[0], self.num_queries, dim=1)[1]
topk_coords_undetach = torch.gather(
enc_outputs_coord_unact, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
topk_coords_unact = topk_coords_undetach.detach()
reference_points = topk_coords_unact.sigmoid()
query_undetach = torch.gather(
output_memory, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, self.embed_dims))
query = query_undetach.detach()
if input_query_bbox is not None:
reference_points = torch.cat(
[input_query_bbox, topk_coords_unact], dim=1).sigmoid()
query = torch.cat([input_query_label, query], dim=1)
if self.two_stage_keep_all_tokens:
hidden_states_enc = output_memory.unsqueeze(0)
referens_enc = enc_outputs_coord_unact.unsqueeze(0)
else:
hidden_states_enc = query_undetach.unsqueeze(0)
referens_enc = topk_coords_undetach.sigmoid().unsqueeze(0)
else:
hidden_states_enc, referens_enc = None, None
query = self.query_embedding.weight[:, None, :].repeat(
1, bs, 1).transpose(0, 1)
reference_points = \
self.refpoint_embedding.weight[:, None, :].repeat(1, bs, 1)
if input_query_bbox is not None:
reference_points = torch.cat(
[input_query_bbox, reference_points], dim=1)
query = torch.cat([input_query_label, query], dim=1)
reference_points = reference_points.sigmoid()
decoder_inputs_dict = dict(
query=query, reference_points=reference_points)
head_inputs_dict = dict(
hidden_states_enc=hidden_states_enc, referens_enc=referens_enc)
return decoder_inputs_dict, head_inputs_dict
def forward_decoder(self, memory: Tensor, memory_mask: Tensor,
spatial_shapes: Tensor, level_start_index: Tensor,
valid_ratios: Tensor, humandet_attn_mask: Tensor,
human2pose_attn_mask: Tensor, input_query_bbox: Tensor,
input_query_label: Tensor, mask_dict: Dict) -> Dict:
"""Forward with Transformer decoder.
The forward procedure is defined as:
'pre_decoder' -> 'decoder'
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape (num_levels, ) and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
valid_ratios (Tensor): The ratios of the valid width and the valid
height relative to the width and the height of features in all
levels, has shape (bs, num_levels, 2).
humandet_attn_mask (Tensor): Human attention mask.
human2pose_attn_mask (Tensor): Human to pose attention mask.
input_query_bbox (Tensor): Denosing bbox query for training.
input_query_label (Tensor): Denosing label query for training.
Returns:
dict: The dictionary of decoder outputs, which includes the
`hidden_states` of the decoder output and `references` including
the initial and intermediate reference_points.
"""
decoder_in, head_in = self.pre_decoder(memory, memory_mask,
spatial_shapes,
input_query_bbox,
input_query_label)
inter_states, inter_references = self.decoder(
query=decoder_in['query'].transpose(0, 1),
value=memory.transpose(0, 1),
key_padding_mask=memory_mask, # for cross_attn
reference_points=decoder_in['reference_points'].transpose(0, 1),
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
humandet_attn_mask=humandet_attn_mask,
human2pose_attn_mask=human2pose_attn_mask)
references = inter_references
decoder_outputs_dict = dict(
hidden_states=inter_states,
references=references,
mask_dict=mask_dict)
decoder_outputs_dict.update(head_in)
return decoder_outputs_dict
def forward_out_head(self, batch_data_samples: OptSampleList,
hidden_states: List[Tensor], references: List[Tensor],
mask_dict: Dict, hidden_states_enc: Tensor,
referens_enc: Tensor) -> Tuple[Tensor]:
"""Forward function."""
out = self.out_head(hidden_states, references, mask_dict,
hidden_states_enc, referens_enc,
batch_data_samples)
return out
def predict(self,
feats: Features,
batch_data_samples: OptSampleList,
test_cfg: ConfigType = {}) -> Predictions:
"""Predict results from features."""
input_shapes = np.array(
[d.metainfo['input_size'] for d in batch_data_samples])
if test_cfg.get('flip_test', False):
assert NotImplementedError(
'flip_test is currently not supported '
'for EDPose. Please set `model.test_cfg.flip_test=False`')
else:
pred_logits, pred_boxes, pred_keypoints = self.forward(
feats, batch_data_samples) # (B, K, D)
pred = self.decode(
input_shapes,
pred_logits=pred_logits,
pred_boxes=pred_boxes,
pred_keypoints=pred_keypoints)
return pred
def decode(self, input_shapes: np.ndarray, pred_logits: Tensor,
pred_boxes: Tensor, pred_keypoints: Tensor):
"""Select the final top-k keypoints, and decode the results from
normalize size to origin input size.
Args:
input_shapes (Tensor): The size of input image.
pred_logits (Tensor): The result of score.
pred_boxes (Tensor): The result of bbox.
pred_keypoints (Tensor): The result of keypoints.
Returns:
"""
if self.data_decoder is None:
raise RuntimeError(f'The data decoder has not been set in \
{self.__class__.__name__}. '
'Please set the data decoder configs in \
the init parameters to '
'enable head methods `head.predict()` and \
`head.decode()`')
preds = []
pred_logits = pred_logits.sigmoid()
pred_logits, pred_boxes, pred_keypoints = to_numpy(
[pred_logits, pred_boxes, pred_keypoints])
for input_shape, pred_logit, pred_bbox, pred_kpts in zip(
input_shapes, pred_logits, pred_boxes, pred_keypoints):
bboxes, keypoints, keypoint_scores = self.data_decoder.decode(
input_shape, pred_logit, pred_bbox, pred_kpts)
# pack outputs
preds.append(
InstanceData(
keypoints=keypoints,
keypoint_scores=keypoint_scores,
bboxes=bboxes))
return preds
def gen_encoder_output_proposals(self, memory: Tensor, memory_mask: Tensor,
spatial_shapes: Tensor
) -> Tuple[Tensor, Tensor]:
"""Generate proposals from encoded memory. The function will only be
used when `as_two_stage` is `True`.
Args:
memory (Tensor): The output embeddings of the Transformer encoder,
has shape (bs, num_feat_points, dim).
memory_mask (Tensor): ByteTensor, the padding mask of the memory,
has shape (bs, num_feat_points).
spatial_shapes (Tensor): Spatial shapes of features in all levels,
has shape (num_levels, 2), last dimension represents (h, w).
Returns:
tuple: A tuple of transformed memory and proposals.
- output_memory (Tensor): The transformed memory for obtaining
top-k proposals, has shape (bs, num_feat_points, dim).
- output_proposals (Tensor): The inverse-normalized proposal, has
shape (batch_size, num_keys, 4) with the last dimension arranged
as (cx, cy, w, h).
"""
bs = memory.size(0)
proposals = []
_cur = 0 # start index in the sequence of the current level
for lvl, (H, W) in enumerate(spatial_shapes):
mask_flatten_ = memory_mask[:,
_cur:(_cur + H * W)].view(bs, H, W, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1).unsqueeze(-1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1).unsqueeze(-1)
grid_y, grid_x = torch.meshgrid(
torch.linspace(
0, H - 1, H, dtype=torch.float32, device=memory.device),
torch.linspace(
0, W - 1, W, dtype=torch.float32, device=memory.device))
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_W, valid_H], 1).view(bs, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(bs, -1, -1, -1) + 0.5) / scale
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
proposal = torch.cat((grid, wh), -1).view(bs, -1, 4)
proposals.append(proposal)
_cur += (H * W)
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) &
(output_proposals < 0.99)).all(
-1, keepdim=True)
output_proposals = inverse_sigmoid(output_proposals)
output_proposals = output_proposals.masked_fill(
memory_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(
~output_proposals_valid, float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(
memory_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid,
float(0))
output_memory = self.memory_trans_fc(output_memory)
output_memory = self.memory_trans_norm(output_memory)
# [bs, sum(hw), 2]
return output_memory, output_proposals
@property
def default_init_cfg(self):
init_cfg = [dict(type='Normal', layer=['Linear'], std=0.01, bias=0)]
return init_cfg
def prepare_for_denosing(self, targets: OptSampleList, device):
"""prepare for dn components in forward function."""
if not self.training:
bs = len(targets)
attn_mask_infere = torch.zeros(
bs,
self.num_heads,
self.num_group * (self.num_keypoints + 1),
self.num_group * (self.num_keypoints + 1),
device=device,
dtype=torch.bool)
group_bbox_kpt = (self.num_keypoints + 1)
kpt_index = [
x for x in range(self.num_group * (self.num_keypoints + 1))
if x % (self.num_keypoints + 1) == 0
]
for matchj in range(self.num_group * (self.num_keypoints + 1)):
sj = (matchj // group_bbox_kpt) * group_bbox_kpt
ej = (matchj // group_bbox_kpt + 1) * group_bbox_kpt
if sj > 0:
attn_mask_infere[:, :, matchj, :sj] = True
if ej < self.num_group * (self.num_keypoints + 1):
attn_mask_infere[:, :, matchj, ej:] = True
for match_x in range(self.num_group * (self.num_keypoints + 1)):
if match_x % group_bbox_kpt == 0:
attn_mask_infere[:, :, match_x, kpt_index] = False
attn_mask_infere = attn_mask_infere.flatten(0, 1)
return None, None, None, attn_mask_infere, None
# targets, dn_scalar, noise_scale = dn_args
device = targets[0]['boxes'].device
bs = len(targets)
refine_queries_num = self.refine_queries_num
# gather gt boxes and labels
gt_boxes = [t['boxes'] for t in targets]
gt_labels = [t['labels'] for t in targets]
gt_keypoints = [t['keypoints'] for t in targets]
# repeat them
def get_indices_for_repeat(now_num, target_num, device='cuda'):
"""
Input:
- now_num: int
- target_num: int
Output:
- indices: tensor[target_num]
"""
out_indice = []
base_indice = torch.arange(now_num).to(device)
multiplier = target_num // now_num
out_indice.append(base_indice.repeat(multiplier))
residue = target_num % now_num
out_indice.append(base_indice[torch.randint(
0, now_num, (residue, ), device=device)])
return torch.cat(out_indice)
gt_boxes_expand = []
gt_labels_expand = []
gt_keypoints_expand = []
for idx, (gt_boxes_i, gt_labels_i, gt_keypoint_i) in enumerate(
zip(gt_boxes, gt_labels, gt_keypoints)):
num_gt_i = gt_boxes_i.shape[0]
if num_gt_i > 0:
indices = get_indices_for_repeat(num_gt_i, refine_queries_num,
device)
gt_boxes_expand_i = gt_boxes_i[indices] # num_dn, 4
gt_labels_expand_i = gt_labels_i[indices]
gt_keypoints_expand_i = gt_keypoint_i[indices]
else:
# all negative samples when no gt boxes
gt_boxes_expand_i = torch.rand(
refine_queries_num, 4, device=device)
gt_labels_expand_i = torch.ones(
refine_queries_num, dtype=torch.int64,
device=device) * int(self.num_classes)
gt_keypoints_expand_i = torch.rand(
refine_queries_num, self.num_keypoints * 3, device=device)
gt_boxes_expand.append(gt_boxes_expand_i)
gt_labels_expand.append(gt_labels_expand_i)
gt_keypoints_expand.append(gt_keypoints_expand_i)
gt_boxes_expand = torch.stack(gt_boxes_expand)
gt_labels_expand = torch.stack(gt_labels_expand)
gt_keypoints_expand = torch.stack(gt_keypoints_expand)
knwon_boxes_expand = gt_boxes_expand.clone()
knwon_labels_expand = gt_labels_expand.clone()
# add noise
if self.denosing_cfg['dn_label_noise_ratio'] > 0:
prob = torch.rand_like(knwon_labels_expand.float())
chosen_indice = prob < self.denosing_cfg['dn_label_noise_ratio']
new_label = torch.randint_like(
knwon_labels_expand[chosen_indice], 0,
self.dn_labelbook_size) # randomly put a new one here
knwon_labels_expand[chosen_indice] = new_label
if self.denosing_cfg['dn_box_noise_scale'] > 0:
diff = torch.zeros_like(knwon_boxes_expand)
diff[..., :2] = knwon_boxes_expand[..., 2:] / 2
diff[..., 2:] = knwon_boxes_expand[..., 2:]
knwon_boxes_expand += torch.mul(
(torch.rand_like(knwon_boxes_expand) * 2 - 1.0),
diff) * self.denosing_cfg['dn_box_noise_scale']
knwon_boxes_expand = knwon_boxes_expand.clamp(min=0.0, max=1.0)
input_query_label = self.label_enc(knwon_labels_expand)
input_query_bbox = inverse_sigmoid(knwon_boxes_expand)
# prepare mask
if 'group2group' in self.denosing_cfg['dn_attn_mask_type_list']:
attn_mask = torch.zeros(
bs,
self.num_heads,
refine_queries_num + self.num_queries,
refine_queries_num + self.num_queries,
device=device,
dtype=torch.bool)
attn_mask[:, :, refine_queries_num:, :refine_queries_num] = True
for idx, (gt_boxes_i,
gt_labels_i) in enumerate(zip(gt_boxes, gt_labels)):
num_gt_i = gt_boxes_i.shape[0]
if num_gt_i == 0:
continue
for matchi in range(refine_queries_num):
si = (matchi // num_gt_i) * num_gt_i
ei = (matchi // num_gt_i + 1) * num_gt_i
if si > 0:
attn_mask[idx, :, matchi, :si] = True
if ei < refine_queries_num:
attn_mask[idx, :, matchi, ei:refine_queries_num] = True
attn_mask = attn_mask.flatten(0, 1)
if 'group2group' in self.denosing_cfg['dn_attn_mask_type_list']:
attn_mask2 = torch.zeros(
bs,
self.num_heads,
refine_queries_num + self.num_group * (self.num_keypoints + 1),
refine_queries_num + self.num_group * (self.num_keypoints + 1),
device=device,
dtype=torch.bool)
attn_mask2[:, :, refine_queries_num:, :refine_queries_num] = True
group_bbox_kpt = (self.num_keypoints + 1)
kpt_index = [
x for x in range(self.num_group * (self.num_keypoints + 1))
if x % (self.num_keypoints + 1) == 0
]
for matchj in range(self.num_group * (self.num_keypoints + 1)):
sj = (matchj // group_bbox_kpt) * group_bbox_kpt
ej = (matchj // group_bbox_kpt + 1) * group_bbox_kpt
if sj > 0:
attn_mask2[:, :, refine_queries_num:,
refine_queries_num:][:, :, matchj, :sj] = True
if ej < self.num_group * (self.num_keypoints + 1):
attn_mask2[:, :, refine_queries_num:,
refine_queries_num:][:, :, matchj, ej:] = True
for match_x in range(self.num_group * (self.num_keypoints + 1)):
if match_x % group_bbox_kpt == 0:
attn_mask2[:, :, refine_queries_num:,
refine_queries_num:][:, :, match_x,
kpt_index] = False
for idx, (gt_boxes_i,
gt_labels_i) in enumerate(zip(gt_boxes, gt_labels)):
num_gt_i = gt_boxes_i.shape[0]
if num_gt_i == 0:
continue
for matchi in range(refine_queries_num):
si = (matchi // num_gt_i) * num_gt_i
ei = (matchi // num_gt_i + 1) * num_gt_i
if si > 0:
attn_mask2[idx, :, matchi, :si] = True
if ei < refine_queries_num:
attn_mask2[idx, :, matchi,
ei:refine_queries_num] = True
attn_mask2 = attn_mask2.flatten(0, 1)
mask_dict = {
'pad_size': refine_queries_num,
'known_bboxs': gt_boxes_expand,
'known_labels': gt_labels_expand,
'known_keypoints': gt_keypoints_expand
}
return input_query_label, input_query_bbox, \
attn_mask, attn_mask2, mask_dict
def loss(self,
feats: Tuple[Tensor],
batch_data_samples: OptSampleList,
train_cfg: OptConfigType = {}) -> dict:
"""Calculate losses from a batch of inputs and data samples."""
assert NotImplementedError(
'the training of EDPose has not been '
'supported. Please stay tuned for further update.')
|