Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,713 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from mmpose.registry import MODELS
@MODELS.register_module()
class KeypointMSELoss(nn.Module):
"""MSE loss for heatmaps.
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
Defaults to ``False``
skip_empty_channel (bool): If ``True``, heatmap channels with no
non-zero value (which means no visible ground-truth keypoint
in the image) will not be used to calculate the loss. Defaults to
``False``
loss_weight (float): Weight of the loss. Defaults to 1.0
"""
def __init__(self,
use_target_weight: bool = False,
skip_empty_channel: bool = False,
loss_weight: float = 1.):
super().__init__()
self.use_target_weight = use_target_weight
self.skip_empty_channel = skip_empty_channel
self.loss_weight = loss_weight
def forward(self,
output: Tensor,
target: Tensor,
target_weights: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
per_keypoint: bool = False,
per_pixel: bool = False) -> Tensor:
"""Forward function of loss.
Note:
- batch_size: B
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
Args:
output (Tensor): The output heatmaps with shape [B, K, H, W]
target (Tensor): The target heatmaps with shape [B, K, H, W]
target_weights (Tensor, optional): The target weights of differet
keypoints, with shape [B, K] (keypoint-wise) or
[B, K, H, W] (pixel-wise).
mask (Tensor, optional): The masks of valid heatmap pixels in
shape [B, K, H, W] or [B, 1, H, W]. If ``None``, no mask will
be applied. Defaults to ``None``
Returns:
Tensor: The calculated loss.
"""
_mask = self._get_mask(target, target_weights, mask)
_loss = F.mse_loss(output, target, reduction='none')
if _mask is not None:
loss = _loss * _mask
if per_pixel:
pass
elif per_keypoint:
loss = loss.mean(dim=(2, 3))
else:
loss = loss.mean()
return loss * self.loss_weight
def _get_mask(self, target: Tensor, target_weights: Optional[Tensor],
mask: Optional[Tensor]) -> Optional[Tensor]:
"""Generate the heatmap mask w.r.t. the given mask, target weight and
`skip_empty_channel` setting.
Returns:
Tensor: The mask in shape (B, K, *) or ``None`` if no mask is
needed.
"""
# Given spatial mask
if mask is not None:
# check mask has matching type with target
assert (mask.ndim == target.ndim and all(
d_m == d_t or d_m == 1
for d_m, d_t in zip(mask.shape, target.shape))), (
f'mask and target have mismatched shapes {mask.shape} v.s.'
f'{target.shape}')
# Mask by target weights (keypoint-wise mask)
if target_weights is not None:
# check target weight has matching shape with target
assert (target_weights.ndim in (2, 4) and target_weights.shape
== target.shape[:target_weights.ndim]), (
'target_weights and target have mismatched shapes '
f'{target_weights.shape} v.s. {target.shape}')
ndim_pad = target.ndim - target_weights.ndim
_mask = target_weights.view(target_weights.shape +
(1, ) * ndim_pad)
if mask is None:
mask = _mask
else:
mask = mask * _mask
# Mask by ``skip_empty_channel``
if self.skip_empty_channel:
_mask = (target != 0).flatten(2).any(dim=2)
ndim_pad = target.ndim - _mask.ndim
_mask = _mask.view(_mask.shape + (1, ) * ndim_pad)
if mask is None:
mask = _mask
else:
mask = mask * _mask
return mask
@MODELS.register_module()
class CombinedTargetMSELoss(nn.Module):
"""MSE loss for combined target.
CombinedTarget: The combination of classification target
(response map) and regression target (offset map).
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
Defaults to ``False``
loss_weight (float): Weight of the loss. Defaults to 1.0
"""
def __init__(self,
use_target_weight: bool = False,
loss_weight: float = 1.):
super().__init__()
self.criterion = nn.MSELoss(reduction='mean')
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
def forward(self, output: Tensor, target: Tensor,
target_weights: Tensor) -> Tensor:
"""Forward function of loss.
Note:
- batch_size: B
- num_channels: C
- heatmaps height: H
- heatmaps weight: W
- num_keypoints: K
Here, C = 3 * K
Args:
output (Tensor): The output feature maps with shape [B, C, H, W].
target (Tensor): The target feature maps with shape [B, C, H, W].
target_weights (Tensor): The target weights of differet keypoints,
with shape [B, K].
Returns:
Tensor: The calculated loss.
"""
batch_size = output.size(0)
num_channels = output.size(1)
heatmaps_pred = output.reshape(
(batch_size, num_channels, -1)).split(1, 1)
heatmaps_gt = target.reshape(
(batch_size, num_channels, -1)).split(1, 1)
loss = 0.
num_joints = num_channels // 3
for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx * 3].squeeze()
heatmap_gt = heatmaps_gt[idx * 3].squeeze()
offset_x_pred = heatmaps_pred[idx * 3 + 1].squeeze()
offset_x_gt = heatmaps_gt[idx * 3 + 1].squeeze()
offset_y_pred = heatmaps_pred[idx * 3 + 2].squeeze()
offset_y_gt = heatmaps_gt[idx * 3 + 2].squeeze()
if self.use_target_weight:
target_weight = target_weights[:, idx, None]
heatmap_pred = heatmap_pred * target_weight
heatmap_gt = heatmap_gt * target_weight
# classification loss
loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
# regression loss
loss += 0.5 * self.criterion(heatmap_gt * offset_x_pred,
heatmap_gt * offset_x_gt)
loss += 0.5 * self.criterion(heatmap_gt * offset_y_pred,
heatmap_gt * offset_y_gt)
return loss / num_joints * self.loss_weight
@MODELS.register_module()
class KeypointOHKMMSELoss(nn.Module):
"""MSE loss with online hard keypoint mining.
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
Defaults to ``False``
topk (int): Only top k joint losses are kept. Defaults to 8
loss_weight (float): Weight of the loss. Defaults to 1.0
"""
def __init__(self,
use_target_weight: bool = False,
topk: int = 8,
loss_weight: float = 1.):
super().__init__()
assert topk > 0
self.criterion = nn.MSELoss(reduction='none')
self.use_target_weight = use_target_weight
self.topk = topk
self.loss_weight = loss_weight
def _ohkm(self, losses: Tensor) -> Tensor:
"""Online hard keypoint mining.
Note:
- batch_size: B
- num_keypoints: K
Args:
loss (Tensor): The losses with shape [B, K]
Returns:
Tensor: The calculated loss.
"""
ohkm_loss = 0.
B = losses.shape[0]
for i in range(B):
sub_loss = losses[i]
_, topk_idx = torch.topk(
sub_loss, k=self.topk, dim=0, sorted=False)
tmp_loss = torch.gather(sub_loss, 0, topk_idx)
ohkm_loss += torch.sum(tmp_loss) / self.topk
ohkm_loss /= B
return ohkm_loss
def forward(self, output: Tensor, target: Tensor,
target_weights: Tensor) -> Tensor:
"""Forward function of loss.
Note:
- batch_size: B
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
Args:
output (Tensor): The output heatmaps with shape [B, K, H, W].
target (Tensor): The target heatmaps with shape [B, K, H, W].
target_weights (Tensor): The target weights of differet keypoints,
with shape [B, K].
Returns:
Tensor: The calculated loss.
"""
num_keypoints = output.size(1)
if num_keypoints < self.topk:
raise ValueError(f'topk ({self.topk}) should not be '
f'larger than num_keypoints ({num_keypoints}).')
losses = []
for idx in range(num_keypoints):
if self.use_target_weight:
target_weight = target_weights[:, idx, None, None]
losses.append(
self.criterion(output[:, idx] * target_weight,
target[:, idx] * target_weight))
else:
losses.append(self.criterion(output[:, idx], target[:, idx]))
losses = [loss.mean(dim=(1, 2)).unsqueeze(dim=1) for loss in losses]
losses = torch.cat(losses, dim=1)
return self._ohkm(losses) * self.loss_weight
@MODELS.register_module()
class AdaptiveWingLoss(nn.Module):
"""Adaptive wing loss. paper ref: 'Adaptive Wing Loss for Robust Face
Alignment via Heatmap Regression' Wang et al. ICCV'2019.
Args:
alpha (float), omega (float), epsilon (float), theta (float)
are hyper-parameters.
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
loss_weight (float): Weight of the loss. Default: 1.0.
"""
def __init__(self,
alpha=2.1,
omega=14,
epsilon=1,
theta=0.5,
use_target_weight=False,
loss_weight=1.):
super().__init__()
self.alpha = float(alpha)
self.omega = float(omega)
self.epsilon = float(epsilon)
self.theta = float(theta)
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
def criterion(self, pred, target):
"""Criterion of wingloss.
Note:
batch_size: N
num_keypoints: K
Args:
pred (torch.Tensor[NxKxHxW]): Predicted heatmaps.
target (torch.Tensor[NxKxHxW]): Target heatmaps.
"""
H, W = pred.shape[2:4]
delta = (target - pred).abs()
A = self.omega * (
1 / (1 + torch.pow(self.theta / self.epsilon, self.alpha - target))
) * (self.alpha - target) * (torch.pow(
self.theta / self.epsilon,
self.alpha - target - 1)) * (1 / self.epsilon)
C = self.theta * A - self.omega * torch.log(
1 + torch.pow(self.theta / self.epsilon, self.alpha - target))
losses = torch.where(
delta < self.theta,
self.omega *
torch.log(1 +
torch.pow(delta / self.epsilon, self.alpha - target)),
A * delta - C)
return torch.mean(losses)
def forward(self,
output: Tensor,
target: Tensor,
target_weights: Optional[Tensor] = None):
"""Forward function.
Note:
batch_size: N
num_keypoints: K
Args:
output (torch.Tensor[N, K, H, W]): Output heatmaps.
target (torch.Tensor[N, K, H, W]): Target heatmaps.
target_weight (torch.Tensor[N, K]):
Weights across different joint types.
"""
if self.use_target_weight:
assert (target_weights.ndim in (2, 4) and target_weights.shape
== target.shape[:target_weights.ndim]), (
'target_weights and target have mismatched shapes '
f'{target_weights.shape} v.s. {target.shape}')
ndim_pad = target.ndim - target_weights.ndim
target_weights = target_weights.view(target_weights.shape +
(1, ) * ndim_pad)
loss = self.criterion(output * target_weights,
target * target_weights)
else:
loss = self.criterion(output, target)
return loss * self.loss_weight
@MODELS.register_module()
class FocalHeatmapLoss(KeypointMSELoss):
"""A class for calculating the modified focal loss for heatmap prediction.
This loss function is exactly the same as the one used in CornerNet. It
runs faster and costs a little bit more memory.
`CornerNet: Detecting Objects as Paired Keypoints
arXiv: <https://arxiv.org/abs/1808.01244>`_.
Arguments:
alpha (int): The alpha parameter in the focal loss equation.
beta (int): The beta parameter in the focal loss equation.
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
Defaults to ``False``
skip_empty_channel (bool): If ``True``, heatmap channels with no
non-zero value (which means no visible ground-truth keypoint
in the image) will not be used to calculate the loss. Defaults to
``False``
loss_weight (float): Weight of the loss. Defaults to 1.0
"""
def __init__(self,
alpha: int = 2,
beta: int = 4,
use_target_weight: bool = False,
skip_empty_channel: bool = False,
loss_weight: float = 1.0):
super(FocalHeatmapLoss, self).__init__(use_target_weight,
skip_empty_channel, loss_weight)
self.alpha = alpha
self.beta = beta
def forward(self,
output: Tensor,
target: Tensor,
target_weights: Optional[Tensor] = None,
mask: Optional[Tensor] = None) -> Tensor:
"""Calculate the modified focal loss for heatmap prediction.
Note:
- batch_size: B
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
Args:
output (Tensor): The output heatmaps with shape [B, K, H, W]
target (Tensor): The target heatmaps with shape [B, K, H, W]
target_weights (Tensor, optional): The target weights of differet
keypoints, with shape [B, K] (keypoint-wise) or
[B, K, H, W] (pixel-wise).
mask (Tensor, optional): The masks of valid heatmap pixels in
shape [B, K, H, W] or [B, 1, H, W]. If ``None``, no mask will
be applied. Defaults to ``None``
Returns:
Tensor: The calculated loss.
"""
_mask = self._get_mask(target, target_weights, mask)
pos_inds = target.eq(1).float()
neg_inds = target.lt(1).float()
if _mask is not None:
pos_inds = pos_inds * _mask
neg_inds = neg_inds * _mask
neg_weights = torch.pow(1 - target, self.beta)
pos_loss = torch.log(output) * torch.pow(1 - output,
self.alpha) * pos_inds
neg_loss = torch.log(1 - output) * torch.pow(
output, self.alpha) * neg_weights * neg_inds
num_pos = pos_inds.float().sum()
if num_pos == 0:
loss = -neg_loss.sum()
else:
loss = -(pos_loss.sum() + neg_loss.sum()) / num_pos
return loss * self.loss_weight
@MODELS.register_module()
class MLECCLoss(nn.Module):
"""Maximum Likelihood Estimation loss for Coordinate Classification.
This loss function is designed to work with coordinate classification
problems where the likelihood of each target coordinate is maximized.
Args:
reduction (str): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'. Default: 'mean'.
mode (str): Specifies the mode of calculating loss:
'linear' | 'square' | 'log'. Default: 'log'.
use_target_weight (bool): If True, uses weighted loss. Different
joint types may have different target weights. Defaults to False.
loss_weight (float): Weight of the loss. Defaults to 1.0.
Raises:
AssertionError: If the `reduction` or `mode` arguments are not in the
expected choices.
NotImplementedError: If the selected mode is not implemented.
"""
def __init__(self,
reduction: str = 'mean',
mode: str = 'log',
use_target_weight: bool = False,
loss_weight: float = 1.0):
super().__init__()
assert reduction in ('mean', 'sum', 'none'), \
f"`reduction` should be either 'mean', 'sum', or 'none', " \
f'but got {reduction}'
assert mode in ('linear', 'square', 'log'), \
f"`mode` should be either 'linear', 'square', or 'log', " \
f'but got {mode}'
self.reduction = reduction
self.mode = mode
self.use_target_weight = use_target_weight
self.loss_weight = loss_weight
def forward(self, outputs, targets, target_weight=None):
"""Forward pass for the MLECCLoss.
Args:
outputs (torch.Tensor): The predicted outputs.
targets (torch.Tensor): The ground truth targets.
target_weight (torch.Tensor, optional): Optional tensor of weights
for each target.
Returns:
torch.Tensor: Calculated loss based on the specified mode and
reduction.
"""
assert len(outputs) == len(targets), \
'Outputs and targets must have the same length'
prob = 1.0
for o, t in zip(outputs, targets):
prob *= (o * t).sum(dim=-1)
if self.mode == 'linear':
loss = 1.0 - prob
elif self.mode == 'square':
loss = 1.0 - prob.pow(2)
elif self.mode == 'log':
loss = -torch.log(prob + 1e-4)
loss[torch.isnan(loss)] = 0.0
if self.use_target_weight:
assert target_weight is not None
for i in range(loss.ndim - target_weight.ndim):
target_weight = target_weight.unsqueeze(-1)
loss = loss * target_weight
if self.reduction == 'sum':
loss = loss.flatten(1).sum(dim=1)
elif self.reduction == 'mean':
loss = loss.flatten(1).mean(dim=1)
return loss * self.loss_weight
@MODELS.register_module()
class OKSHeatmapLoss(nn.Module):
"""OKS-based loss for heatmaps.
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
Defaults to ``False``
skip_empty_channel (bool): If ``True``, heatmap channels with no
non-zero value (which means no visible ground-truth keypoint
in the image) will not be used to calculate the loss. Defaults to
``False``
loss_weight (float): Weight of the loss. Defaults to 1.0
"""
def __init__(self,
use_target_weight: bool = False,
skip_empty_channel: bool = False,
smoothing_weight: float = 0.2,
gaussian_weight: float = 0.0,
loss_weight: float = 1.,
oks_type: str = "minus"):
super().__init__()
self.use_target_weight = use_target_weight
self.skip_empty_channel = skip_empty_channel
self.loss_weight = loss_weight
self.smoothing_weight = smoothing_weight
self.gaussian_weight = gaussian_weight
self.oks_type = oks_type.lower()
assert self.oks_type in ["minus", "plus", "both"]
def forward(self,
output: Tensor,
target: Tensor,
target_weights: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
per_pixel: bool = False,
per_keypoint: bool = False) -> Tensor:
"""Forward function of loss.
Note:
- batch_size: B
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
Args:
output (Tensor): The output heatmaps with shape [B, K, H, W]
target (Tensor): The target heatmaps with shape [B, K, H, W]
target_weights (Tensor, optional): The target weights of differet
keypoints, with shape [B, K] (keypoint-wise) or
[B, K, H, W] (pixel-wise).
mask (Tensor, optional): The masks of valid heatmap pixels in
shape [B, K, H, W] or [B, 1, H, W]. If ``None``, no mask will
be applied. Defaults to ``None``
Returns:
Tensor: The calculated loss.
"""
assert target.max() <= 1, 'target should be normalized'
assert target.min() >= 0, 'target should be normalized'
B, K, H, W = output.shape
_mask = self._get_mask(target, target_weights, mask)
oks_minus = output * (1-target)
oks_plus = (1-output) * (target)
if self.oks_type == "both":
oks = (oks_minus + oks_plus) / 2
elif self.oks_type == "minus":
oks = oks_minus
elif self.oks_type == "plus":
oks = oks_plus
else:
raise ValueError(f"oks_type {self.oks_type} not recognized")
mse = F.mse_loss(output, target, reduction='none')
# Smoothness loss
sobel_x = torch.tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float32).view(1, 1, 3, 3).to(output.device)
sobel_y = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32).view(1, 1, 3, 3).to(output.device)
gradient_x = F.conv2d(output.reshape(B*K, 1, H, W), sobel_x, padding='same')
gradient_y = F.conv2d(output.reshape(B*K, 1, H, W), sobel_y, padding='same')
gradient = (gradient_x**2 + gradient_y**2).reshape(B, K, H, W)
if _mask is not None:
oks = oks * _mask
mse = mse * _mask
gradient = gradient * _mask
oks_minus_weight = (
1 - self.smoothing_weight - self.gaussian_weight
)
if per_pixel:
loss = (
self.smoothing_weight * gradient +
oks_minus_weight * oks +
self.gaussian_weight * mse
)
elif per_keypoint:
max_gradient, _ = gradient.reshape((B, K, H*W)).max(dim=-1)
loss = (
oks_minus_weight * oks.sum(dim=(2, 3)) +
self.smoothing_weight * max_gradient +
self.gaussian_weight * mse.mean(dim=(2, 3))
)
else:
max_gradient, _ = gradient.reshape((B, K, H*W)).max(dim=-1)
loss = (
oks_minus_weight * oks.sum(dim=(2, 3)) +
self.smoothing_weight * max_gradient +
self.gaussian_weight * mse.mean(dim=(2, 3))
).mean()
return loss * self.loss_weight
def _get_mask(self, target: Tensor, target_weights: Optional[Tensor],
mask: Optional[Tensor]) -> Optional[Tensor]:
"""Generate the heatmap mask w.r.t. the given mask, target weight and
`skip_empty_channel` setting.
Returns:
Tensor: The mask in shape (B, K, *) or ``None`` if no mask is
needed.
"""
# Given spatial mask
if mask is not None:
# check mask has matching type with target
assert (mask.ndim == target.ndim and all(
d_m == d_t or d_m == 1
for d_m, d_t in zip(mask.shape, target.shape))), (
f'mask and target have mismatched shapes {mask.shape} v.s.'
f'{target.shape}')
# Mask by target weights (keypoint-wise mask)
if target_weights is not None:
# check target weight has matching shape with target
assert (target_weights.ndim in (2, 4) and target_weights.shape
== target.shape[:target_weights.ndim]), (
'target_weights and target have mismatched shapes '
f'{target_weights.shape} v.s. {target.shape}')
ndim_pad = target.ndim - target_weights.ndim
_mask = target_weights.view(target_weights.shape +
(1, ) * ndim_pad)
if mask is None:
mask = _mask
else:
mask = mask * _mask
# Mask by ``skip_empty_channel``
if self.skip_empty_channel:
_mask = (target != 0).flatten(2).any(dim=2)
ndim_pad = target.ndim - _mask.ndim
_mask = _mask.view(_mask.shape + (1, ) * ndim_pad)
if mask is None:
mask = _mask
else:
mask = mask * _mask
return mask
@MODELS.register_module()
class CalibrationLoss(nn.Module):
"""OKS-based loss for heatmaps.
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
Defaults to ``False``
skip_empty_channel (bool): If ``True``, heatmap channels with no
non-zero value (which means no visible ground-truth keypoint
in the image) will not be used to calculate the loss. Defaults to
``False``
loss_weight (float): Weight of the loss. Defaults to 1.0
"""
def __init__(self,
use_target_weight: bool = False,
skip_empty_channel: bool = False,
loss_weight: float = 1.,
ignore_bottom_percentile: float = 0.7):
super().__init__()
self.use_target_weight = use_target_weight
self.skip_empty_channel = skip_empty_channel
self.loss_weight = loss_weight
self.ignore_bottom_percentile = ignore_bottom_percentile
def forward(self,
output: Tensor,
target: Tensor,
target_weights: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
per_pixel: bool = False,
per_keypoint: bool = False) -> Tensor:
"""Forward function of loss.
Note:
- batch_size: B
- num_keypoints: K
- heatmaps height: H
- heatmaps weight: W
Args:
output (Tensor): The output heatmaps with shape [B, K, H, W]
target (Tensor): The target heatmaps with shape [B, K, H, W]
target_weights (Tensor, optional): The target weights of differet
keypoints, with shape [B, K] (keypoint-wise) or
[B, K, H, W] (pixel-wise).
mask (Tensor, optional): The masks of valid heatmap pixels in
shape [B, K, H, W] or [B, 1, H, W]. If ``None``, no mask will
be applied. Defaults to ``None``
Returns:
Tensor: The calculated loss.
"""
assert target.max() <= 1, 'target should be normalized'
assert target.min() >= 0, 'target should be normalized'
B, K, H, W = output.shape
_mask = self._get_mask(target, target_weights, mask)
pred_probs = output * target
pred_probs_sum = pred_probs.sum(dim=(2,3))
# threshold = torch.quantile(pred_probs_sum.detach(), self.ignore_bottom_percentile)
# _mask = _mask * (pred_probs_sum > self.ignore_bottom_percentile).view(B, K, 1, 1)
# print()
# tmp = -torch.log(pred_probs_sum.flatten() + 1e-10)[:, None]
# tmp = torch.cat([pred_probs_sum.flatten()[:, None], tmp, _mask.reshape(tmp.shape)], dim=1)
# print(tmp[:5, :])
if per_pixel:
cross_entropy = -torch.log(pred_probs + 1e-10)
loss = cross_entropy * _mask
elif per_keypoint:
cross_entropy = -torch.log(pred_probs_sum + 1e-10)
loss = cross_entropy * _mask
else:
cross_entropy = -torch.log(pred_probs_sum + 1e-10)
loss = cross_entropy * _mask
loss = loss.mean()
return loss * self.loss_weight
def _get_mask(self, target: Tensor, target_weights: Optional[Tensor],
mask: Optional[Tensor]) -> Optional[Tensor]:
"""Generate the heatmap mask w.r.t. the given mask, target weight and
`skip_empty_channel` setting.
Returns:
Tensor: The mask in shape (B, K, *) or ``None`` if no mask is
needed.
"""
# Given spatial mask
if mask is not None:
# check mask has matching type with target
assert (mask.ndim == target.ndim and all(
d_m == d_t or d_m == 1
for d_m, d_t in zip(mask.shape, target.shape))), (
f'mask and target have mismatched shapes {mask.shape} v.s.'
f'{target.shape}')
# Mask by target weights (keypoint-wise mask)
if target_weights is not None:
# check target weight has matching shape with target
assert (target_weights.ndim in (2, 4) and target_weights.shape
== target.shape[:target_weights.ndim]), (
'target_weights and target have mismatched shapes '
f'{target_weights.shape} v.s. {target.shape}')
ndim_pad = target.ndim - target_weights.ndim
_mask = target_weights.view(target_weights.shape +
(1, ) * ndim_pad)
if mask is None:
mask = _mask
else:
mask = mask * _mask
# Mask by ``skip_empty_channel``
if self.skip_empty_channel:
_mask = (target != 0).flatten(2).any(dim=2)
ndim_pad = target.ndim - _mask.ndim
_mask = _mask.view(_mask.shape + (1, ) * ndim_pad)
if mask is None:
mask = _mask
else:
mask = mask * _mask
return mask
|