Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,378 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule, ModuleList
from torch import Tensor
from mmpose.models.utils import (DetrTransformerEncoder, RepVGGBlock,
SinePositionalEncoding)
from mmpose.registry import MODELS
from mmpose.utils.typing import ConfigType, OptConfigType
class CSPRepLayer(BaseModule):
"""CSPRepLayer, a layer that combines Cross Stage Partial Networks with
RepVGG Blocks.
Args:
in_channels (int): Number of input channels to the layer.
out_channels (int): Number of output channels from the layer.
num_blocks (int): The number of RepVGG blocks to be used in the layer.
Defaults to 3.
widen_factor (float): Expansion factor for intermediate channels.
Determines the hidden channel size based on out_channels.
Defaults to 1.0.
norm_cfg (dict): Configuration for normalization layers.
Defaults to Batch Normalization with trainable parameters.
act_cfg (dict): Configuration for activation layers.
Defaults to SiLU (Swish) with in-place operation.
"""
def __init__(self,
in_channels: int,
out_channels: int,
num_blocks: int = 3,
widen_factor: float = 1.0,
norm_cfg: OptConfigType = dict(type='BN', requires_grad=True),
act_cfg: OptConfigType = dict(type='SiLU', inplace=True)):
super(CSPRepLayer, self).__init__()
hidden_channels = int(out_channels * widen_factor)
self.conv1 = ConvModule(
in_channels,
hidden_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv2 = ConvModule(
in_channels,
hidden_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.bottlenecks = nn.Sequential(*[
RepVGGBlock(hidden_channels, hidden_channels, act_cfg=act_cfg)
for _ in range(num_blocks)
])
if hidden_channels != out_channels:
self.conv3 = ConvModule(
hidden_channels,
out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
else:
self.conv3 = nn.Identity()
def forward(self, x: Tensor) -> Tensor:
"""Forward function.
Args:
x (Tensor): The input tensor.
Returns:
Tensor: The output tensor.
"""
x_1 = self.conv1(x)
x_1 = self.bottlenecks(x_1)
x_2 = self.conv2(x)
return self.conv3(x_1 + x_2)
@MODELS.register_module()
class HybridEncoder(BaseModule):
"""Hybrid encoder neck introduced in `RT-DETR` by Lyu et al (2023),
combining transformer encoders with a Feature Pyramid Network (FPN) and a
Path Aggregation Network (PAN).
Args:
encoder_cfg (ConfigType): Configuration for the transformer encoder.
projector (OptConfigType, optional): Configuration for an optional
projector module. Defaults to None.
num_encoder_layers (int, optional): Number of encoder layers.
Defaults to 1.
in_channels (List[int], optional): Input channels of feature maps.
Defaults to [512, 1024, 2048].
feat_strides (List[int], optional): Strides of feature maps.
Defaults to [8, 16, 32].
hidden_dim (int, optional): Hidden dimension of the MLP.
Defaults to 256.
use_encoder_idx (List[int], optional): Indices of encoder layers to
use. Defaults to [2].
pe_temperature (int, optional): Positional encoding temperature.
Defaults to 10000.
widen_factor (float, optional): Expansion factor for CSPRepLayer.
Defaults to 1.0.
deepen_factor (float, optional): Depth multiplier for CSPRepLayer.
Defaults to 1.0.
spe_learnable (bool, optional): Whether positional encoding is
learnable. Defaults to False.
output_indices (Optional[List[int]], optional): Indices of output
layers. Defaults to None.
norm_cfg (OptConfigType, optional): Configuration for normalization
layers. Defaults to Batch Normalization.
act_cfg (OptConfigType, optional): Configuration for activation
layers. Defaults to SiLU (Swish) with in-place operation.
.. _`RT-DETR`: https://arxiv.org/abs/2304.08069
"""
def __init__(self,
encoder_cfg: ConfigType = dict(),
projector: OptConfigType = None,
num_encoder_layers: int = 1,
in_channels: List[int] = [512, 1024, 2048],
feat_strides: List[int] = [8, 16, 32],
hidden_dim: int = 256,
use_encoder_idx: List[int] = [2],
pe_temperature: int = 10000,
widen_factor: float = 1.0,
deepen_factor: float = 1.0,
spe_learnable: bool = False,
output_indices: Optional[List[int]] = None,
norm_cfg: OptConfigType = dict(type='BN', requires_grad=True),
act_cfg: OptConfigType = dict(type='SiLU', inplace=True)):
super(HybridEncoder, self).__init__()
self.in_channels = in_channels
self.feat_strides = feat_strides
self.hidden_dim = hidden_dim
self.use_encoder_idx = use_encoder_idx
self.num_encoder_layers = num_encoder_layers
self.pe_temperature = pe_temperature
self.output_indices = output_indices
# channel projection
self.input_proj = ModuleList()
for in_channel in in_channels:
self.input_proj.append(
ConvModule(
in_channel,
hidden_dim,
kernel_size=1,
padding=0,
norm_cfg=norm_cfg,
act_cfg=None))
# encoder transformer
if len(use_encoder_idx) > 0:
pos_enc_dim = self.hidden_dim // 2
self.encoder = ModuleList([
DetrTransformerEncoder(num_encoder_layers, encoder_cfg)
for _ in range(len(use_encoder_idx))
])
self.sincos_pos_enc = SinePositionalEncoding(
pos_enc_dim,
learnable=spe_learnable,
temperature=self.pe_temperature,
spatial_dim=2)
# top-down fpn
lateral_convs = list()
fpn_blocks = list()
for idx in range(len(in_channels) - 1, 0, -1):
lateral_convs.append(
ConvModule(
hidden_dim,
hidden_dim,
1,
1,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
fpn_blocks.append(
CSPRepLayer(
hidden_dim * 2,
hidden_dim,
round(3 * deepen_factor),
act_cfg=act_cfg,
widen_factor=widen_factor))
self.lateral_convs = ModuleList(lateral_convs)
self.fpn_blocks = ModuleList(fpn_blocks)
# bottom-up pan
downsample_convs = list()
pan_blocks = list()
for idx in range(len(in_channels) - 1):
downsample_convs.append(
ConvModule(
hidden_dim,
hidden_dim,
3,
stride=2,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
pan_blocks.append(
CSPRepLayer(
hidden_dim * 2,
hidden_dim,
round(3 * deepen_factor),
act_cfg=act_cfg,
widen_factor=widen_factor))
self.downsample_convs = ModuleList(downsample_convs)
self.pan_blocks = ModuleList(pan_blocks)
if projector is not None:
self.projector = MODELS.build(projector)
else:
self.projector = None
def forward(self, inputs: Tuple[Tensor]) -> Tuple[Tensor]:
"""Forward function."""
assert len(inputs) == len(self.in_channels)
proj_feats = [
self.input_proj[i](inputs[i]) for i in range(len(inputs))
]
# encoder
if self.num_encoder_layers > 0:
for i, enc_ind in enumerate(self.use_encoder_idx):
h, w = proj_feats[enc_ind].shape[2:]
# flatten [B, C, H, W] to [B, HxW, C]
src_flatten = proj_feats[enc_ind].flatten(2).permute(
0, 2, 1).contiguous()
if torch.onnx.is_in_onnx_export():
pos_enc = getattr(self, f'pos_enc_{i}')
else:
pos_enc = self.sincos_pos_enc(size=(h, w))
pos_enc = pos_enc.transpose(-1, -2).reshape(1, h * w, -1)
memory = self.encoder[i](
src_flatten, query_pos=pos_enc, key_padding_mask=None)
proj_feats[enc_ind] = memory.permute(
0, 2, 1).contiguous().view([-1, self.hidden_dim, h, w])
# top-down fpn
inner_outs = [proj_feats[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_high = inner_outs[0]
feat_low = proj_feats[idx - 1]
feat_high = self.lateral_convs[len(self.in_channels) - 1 - idx](
feat_high)
inner_outs[0] = feat_high
upsample_feat = F.interpolate(
feat_high, scale_factor=2., mode='nearest')
inner_out = self.fpn_blocks[len(self.in_channels) - 1 - idx](
torch.cat([upsample_feat, feat_low], axis=1))
inner_outs.insert(0, inner_out)
# bottom-up pan
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_high = inner_outs[idx + 1]
downsample_feat = self.downsample_convs[idx](feat_low) # Conv
out = self.pan_blocks[idx]( # CSPRepLayer
torch.cat([downsample_feat, feat_high], axis=1))
outs.append(out)
if self.output_indices is not None:
outs = [outs[i] for i in self.output_indices]
if self.projector is not None:
outs = self.projector(outs)
return tuple(outs)
def switch_to_deploy(self, test_cfg):
"""Switch to deploy mode."""
if getattr(self, 'deploy', False):
return
if self.num_encoder_layers > 0:
for i, enc_ind in enumerate(self.use_encoder_idx):
h, w = test_cfg['input_size']
h = int(h / 2**(3 + enc_ind))
w = int(w / 2**(3 + enc_ind))
pos_enc = self.sincos_pos_enc(size=(h, w))
pos_enc = pos_enc.transpose(-1, -2).reshape(1, h * w, -1)
self.register_buffer(f'pos_enc_{i}', pos_enc)
self.deploy = True
|