Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,871 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# Copyright (c) OpenMMLab. All rights reserved.
from itertools import zip_longest
from typing import Tuple, Union
import torch
from torch import Tensor
from mmpose.models.utils import check_and_update_config
from mmpose.models.utils.tta import flip_coordinates
from mmpose.registry import MODELS
from mmpose.utils.typing import (ConfigType, InstanceList, OptConfigType,
Optional, OptMultiConfig, OptSampleList,
PixelDataList, SampleList)
from .base import BasePoseEstimator
@MODELS.register_module()
class PoseLifter(BasePoseEstimator):
"""Base class for pose lifter.
Args:
backbone (dict): The backbone config
neck (dict, optional): The neck config. Defaults to ``None``
head (dict, optional): The head config. Defaults to ``None``
traj_backbone (dict, optional): The backbone config for trajectory
model. Defaults to ``None``
traj_neck (dict, optional): The neck config for trajectory model.
Defaults to ``None``
traj_head (dict, optional): The head config for trajectory model.
Defaults to ``None``
semi_loss (dict, optional): The semi-supervised loss config.
Defaults to ``None``
train_cfg (dict, optional): The runtime config for training process.
Defaults to ``None``
test_cfg (dict, optional): The runtime config for testing process.
Defaults to ``None``
data_preprocessor (dict, optional): The data preprocessing config to
build the instance of :class:`BaseDataPreprocessor`. Defaults to
``None``
init_cfg (dict, optional): The config to control the initialization.
Defaults to ``None``
metainfo (dict): Meta information for dataset, such as keypoints
definition and properties. If set, the metainfo of the input data
batch will be overridden. For more details, please refer to
https://mmpose.readthedocs.io/en/latest/user_guides/
prepare_datasets.html#create-a-custom-dataset-info-
config-file-for-the-dataset. Defaults to ``None``
"""
def __init__(self,
backbone: ConfigType,
neck: OptConfigType = None,
head: OptConfigType = None,
traj_backbone: OptConfigType = None,
traj_neck: OptConfigType = None,
traj_head: OptConfigType = None,
semi_loss: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None,
metainfo: Optional[dict] = None):
super().__init__(
backbone=backbone,
neck=neck,
head=head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
init_cfg=init_cfg,
metainfo=metainfo)
# trajectory model
self.share_backbone = False
if traj_head is not None:
if traj_backbone is not None:
self.traj_backbone = MODELS.build(traj_backbone)
else:
self.share_backbone = True
# the PR #2108 and #2126 modified the interface of neck and head.
# The following function automatically detects outdated
# configurations and updates them accordingly, while also providing
# clear and concise information on the changes made.
traj_neck, traj_head = check_and_update_config(
traj_neck, traj_head)
if traj_neck is not None:
self.traj_neck = MODELS.build(traj_neck)
self.traj_head = MODELS.build(traj_head)
# semi-supervised loss
self.semi_supervised = semi_loss is not None
if self.semi_supervised:
assert any([head, traj_head])
self.semi_loss = MODELS.build(semi_loss)
@property
def with_traj_backbone(self):
"""bool: Whether the pose lifter has trajectory backbone."""
return hasattr(self, 'traj_backbone') and \
self.traj_backbone is not None
@property
def with_traj_neck(self):
"""bool: Whether the pose lifter has trajectory neck."""
return hasattr(self, 'traj_neck') and self.traj_neck is not None
@property
def with_traj(self):
"""bool: Whether the pose lifter has trajectory head."""
return hasattr(self, 'traj_head')
@property
def causal(self):
"""bool: Whether the pose lifter is causal."""
if hasattr(self.backbone, 'causal'):
return self.backbone.causal
else:
raise AttributeError('A PoseLifter\'s backbone should have '
'the bool attribute "causal" to indicate if'
'it performs causal inference.')
def extract_feat(self, inputs: Tensor) -> Tuple[Tensor]:
"""Extract features.
Args:
inputs (Tensor): Image tensor with shape (N, K, C, T).
Returns:
tuple[Tensor]: Multi-level features that may have various
resolutions.
"""
# supervised learning
# pose model
feats = self.backbone(inputs)
if self.with_neck:
feats = self.neck(feats)
# trajectory model
if self.with_traj:
if self.share_backbone:
traj_x = feats
else:
traj_x = self.traj_backbone(inputs)
if self.with_traj_neck:
traj_x = self.traj_neck(traj_x)
return feats, traj_x
else:
return feats
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None
) -> Union[Tensor, Tuple[Tensor]]:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
inputs (Tensor): Inputs with shape (N, K, C, T).
Returns:
Union[Tensor | Tuple[Tensor]]: forward output of the network.
"""
feats = self.extract_feat(inputs)
if self.with_traj:
# forward with trajectory model
x, traj_x = feats
if self.with_head:
x = self.head.forward(x)
traj_x = self.traj_head.forward(traj_x)
return x, traj_x
else:
# forward without trajectory model
x = feats
if self.with_head:
x = self.head.forward(x)
return x
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Inputs with shape (N, K, C, T).
data_samples (List[:obj:`PoseDataSample`]): The batch
data samples.
Returns:
dict: A dictionary of losses.
"""
feats = self.extract_feat(inputs)
losses = {}
if self.with_traj:
x, traj_x = feats
# loss of trajectory model
losses.update(
self.traj_head.loss(
traj_x, data_samples, train_cfg=self.train_cfg))
else:
x = feats
if self.with_head:
# loss of pose model
losses.update(
self.head.loss(x, data_samples, train_cfg=self.train_cfg))
# TODO: support semi-supervised learning
if self.semi_supervised:
losses.update(semi_loss=self.semi_loss(inputs, data_samples))
return losses
def predict(self, inputs: Tensor, data_samples: SampleList) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Note:
- batch_size: B
- num_input_keypoints: K
- input_keypoint_dim: C
- input_sequence_len: T
Args:
inputs (Tensor): Inputs with shape like (B, K, C, T).
data_samples (List[:obj:`PoseDataSample`]): The batch
data samples
Returns:
list[:obj:`PoseDataSample`]: The pose estimation results of the
input images. The return value is `PoseDataSample` instances with
``pred_instances`` and ``pred_fields``(optional) field , and
``pred_instances`` usually contains the following keys:
- keypoints (Tensor): predicted keypoint coordinates in shape
(num_instances, K, D) where K is the keypoint number and D
is the keypoint dimension
- keypoint_scores (Tensor): predicted keypoint scores in shape
(num_instances, K)
"""
assert self.with_head, (
'The model must have head to perform prediction.')
if self.test_cfg.get('flip_test', False):
flip_indices = data_samples[0].metainfo['flip_indices']
_feats = self.extract_feat(inputs)
_feats_flip = self.extract_feat(
torch.stack([
flip_coordinates(
_input,
flip_indices=flip_indices,
shift_coords=self.test_cfg.get('shift_coords', True),
input_size=(1, 1)) for _input in inputs
],
dim=0))
feats = [_feats, _feats_flip]
else:
feats = self.extract_feat(inputs)
pose_preds, batch_pred_instances, batch_pred_fields = None, None, None
traj_preds, batch_traj_instances, batch_traj_fields = None, None, None
if self.with_traj:
x, traj_x = feats
traj_preds = self.traj_head.predict(
traj_x, data_samples, test_cfg=self.test_cfg)
else:
x = feats
if self.with_head:
pose_preds = self.head.predict(
x, data_samples, test_cfg=self.test_cfg)
if isinstance(pose_preds, tuple):
batch_pred_instances, batch_pred_fields = pose_preds
else:
batch_pred_instances = pose_preds
if isinstance(traj_preds, tuple):
batch_traj_instances, batch_traj_fields = traj_preds
else:
batch_traj_instances = traj_preds
results = self.add_pred_to_datasample(batch_pred_instances,
batch_pred_fields,
batch_traj_instances,
batch_traj_fields, data_samples)
return results
def add_pred_to_datasample(
self,
batch_pred_instances: InstanceList,
batch_pred_fields: Optional[PixelDataList],
batch_traj_instances: InstanceList,
batch_traj_fields: Optional[PixelDataList],
batch_data_samples: SampleList,
) -> SampleList:
"""Add predictions into data samples.
Args:
batch_pred_instances (List[InstanceData]): The predicted instances
of the input data batch
batch_pred_fields (List[PixelData], optional): The predicted
fields (e.g. heatmaps) of the input batch
batch_traj_instances (List[InstanceData]): The predicted instances
of the input data batch
batch_traj_fields (List[PixelData], optional): The predicted
fields (e.g. heatmaps) of the input batch
batch_data_samples (List[PoseDataSample]): The input data batch
Returns:
List[PoseDataSample]: A list of data samples where the predictions
are stored in the ``pred_instances`` field of each data sample.
"""
assert len(batch_pred_instances) == len(batch_data_samples)
if batch_pred_fields is None:
batch_pred_fields, batch_traj_fields = [], []
if batch_traj_instances is None:
batch_traj_instances = []
output_keypoint_indices = self.test_cfg.get('output_keypoint_indices',
None)
for (pred_instances, pred_fields, traj_instances, traj_fields,
data_sample) in zip_longest(batch_pred_instances,
batch_pred_fields,
batch_traj_instances,
batch_traj_fields,
batch_data_samples):
if output_keypoint_indices is not None:
# select output keypoints with given indices
num_keypoints = pred_instances.keypoints.shape[1]
for key, value in pred_instances.all_items():
if key.startswith('keypoint'):
pred_instances.set_field(
value[:, output_keypoint_indices], key)
data_sample.pred_instances = pred_instances
if pred_fields is not None:
if output_keypoint_indices is not None:
# select output heatmap channels with keypoint indices
# when the number of heatmap channel matches num_keypoints
for key, value in pred_fields.all_items():
if value.shape[0] != num_keypoints:
continue
pred_fields.set_field(value[output_keypoint_indices],
key)
data_sample.pred_fields = pred_fields
return batch_data_samples
|