Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,492 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Optional, Sequence, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.cnn.bricks import DropPath
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmengine.model import BaseModule, ModuleList
from mmengine.utils import digit_version, to_2tuple
from mmengine.utils.dl_utils import TORCH_VERSION
from torch import Tensor
from mmpose.utils.typing import ConfigType, OptConfigType
try:
from fairscale.nn.checkpoint import checkpoint_wrapper
except ImportError:
checkpoint_wrapper = None
def nlc_to_nchw(x, hw_shape):
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, L, C] before conversion.
hw_shape (Sequence[int]): The height and width of output feature map.
Returns:
Tensor: The output tensor of shape [N, C, H, W] after conversion.
"""
H, W = hw_shape
assert len(x.shape) == 3
B, L, C = x.shape
assert L == H * W, 'The seq_len does not match H, W'
return x.transpose(1, 2).reshape(B, C, H, W).contiguous()
def nchw_to_nlc(x):
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, C, H, W] before conversion.
Returns:
Tensor: The output tensor of shape [N, L, C] after conversion.
"""
assert len(x.shape) == 4
return x.flatten(2).transpose(1, 2).contiguous()
class AdaptivePadding(nn.Module):
"""Applies padding to input (if needed) so that input can get fully covered
by filter you specified. It support two modes "same" and "corner". The
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around
input. The "corner" mode would pad zero to bottom right.
Args:
kernel_size (int | tuple): Size of the kernel:
stride (int | tuple): Stride of the filter. Default: 1:
dilation (int | tuple): Spacing between kernel elements.
Default: 1
padding (str): Support "same" and "corner", "corner" mode
would pad zero to bottom right, and "same" mode would
pad zero around input. Default: "corner".
Example:
>>> kernel_size = 16
>>> stride = 16
>>> dilation = 1
>>> input = torch.rand(1, 1, 15, 17)
>>> adap_pad = AdaptivePadding(
>>> kernel_size=kernel_size,
>>> stride=stride,
>>> dilation=dilation,
>>> padding="corner")
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
>>> input = torch.rand(1, 1, 16, 17)
>>> out = adap_pad(input)
>>> assert (out.shape[2], out.shape[3]) == (16, 32)
"""
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'):
super(AdaptivePadding, self).__init__()
assert padding in ('same', 'corner')
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
dilation = to_2tuple(dilation)
self.padding = padding
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
def get_pad_shape(self, input_shape):
"""Get horizontal and vertical padding shapes."""
input_h, input_w = input_shape
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.stride
output_h = math.ceil(input_h / stride_h)
output_w = math.ceil(input_w / stride_w)
pad_h = max((output_h - 1) * stride_h +
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0)
pad_w = max((output_w - 1) * stride_w +
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0)
return pad_h, pad_w
def forward(self, x):
"""Forward function."""
pad_h, pad_w = self.get_pad_shape(x.size()[-2:])
if pad_h > 0 or pad_w > 0:
if self.padding == 'corner':
x = F.pad(x, [0, pad_w, 0, pad_h])
elif self.padding == 'same':
x = F.pad(x, [
pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
pad_h - pad_h // 2
])
return x
class PatchEmbed(BaseModule):
"""Image to Patch Embedding.
We use a conv layer to implement PatchEmbed.
Args:
in_channels (int): The num of input channels. Default: 3
embed_dims (int): The dimensions of embedding. Default: 768
conv_type (str): The config dict for embedding
conv layer type selection. Default: "Conv2d.
kernel_size (int): The kernel_size of embedding conv. Default: 16.
stride (int): The slide stride of embedding conv.
Default: None (Would be set as `kernel_size`).
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int): The dilation rate of embedding conv. Default: 1.
bias (bool): Bias of embed conv. Default: True.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: None.
input_size (int | tuple | None): The size of input, which will be
used to calculate the out size. Only work when `dynamic_size`
is False. Default: None.
init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
Default: None.
"""
def __init__(
self,
in_channels=3,
embed_dims=768,
conv_type='Conv2d',
kernel_size=16,
stride=16,
padding='corner',
dilation=1,
bias=True,
norm_cfg=None,
input_size=None,
init_cfg=None,
):
super(PatchEmbed, self).__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
if stride is None:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding)
# disable the padding of conv
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.projection = build_conv_layer(
dict(type=conv_type),
in_channels=in_channels,
out_channels=embed_dims,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
else:
self.norm = None
if input_size:
input_size = to_2tuple(input_size)
# `init_out_size` would be used outside to
# calculate the num_patches
# when `use_abs_pos_embed` outside
self.init_input_size = input_size
if self.adap_padding:
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size)
input_h, input_w = input_size
input_h = input_h + pad_h
input_w = input_w + pad_w
input_size = (input_h, input_w)
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
h_out = (input_size[0] + 2 * padding[0] - dilation[0] *
(kernel_size[0] - 1) - 1) // stride[0] + 1
w_out = (input_size[1] + 2 * padding[1] - dilation[1] *
(kernel_size[1] - 1) - 1) // stride[1] + 1
self.init_out_size = (h_out, w_out)
else:
self.init_input_size = None
self.init_out_size = None
def forward(self, x):
"""
Args:
x (Tensor): Has shape (B, C, H, W). In most case, C is 3.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, out_h * out_w, embed_dims)
- out_size (tuple[int]): Spatial shape of x, arrange as
(out_h, out_w).
"""
if self.adap_padding:
x = self.adap_padding(x)
x = self.projection(x)
out_size = (x.shape[2], x.shape[3])
x = x.flatten(2).transpose(1, 2)
if self.norm is not None:
x = self.norm(x)
return x, out_size
class PatchMerging(BaseModule):
"""Merge patch feature map.
This layer groups feature map by kernel_size, and applies norm and linear
layers to the grouped feature map. Our implementation uses `nn.Unfold` to
merge patch, which is about 25% faster than original implementation.
Instead, we need to modify pretrained models for compatibility.
Args:
in_channels (int): The num of input channels.
to gets fully covered by filter and stride you specified..
Default: True.
out_channels (int): The num of output channels.
kernel_size (int | tuple, optional): the kernel size in the unfold
layer. Defaults to 2.
stride (int | tuple, optional): the stride of the sliding blocks in the
unfold layer. Default: None. (Would be set as `kernel_size`)
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Default: "corner".
dilation (int | tuple, optional): dilation parameter in the unfold
layer. Default: 1.
bias (bool, optional): Whether to add bias in linear layer or not.
Defaults: False.
norm_cfg (dict, optional): Config dict for normalization layer.
Default: dict(type='LN').
init_cfg (dict, optional): The extra config for initialization.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=2,
stride=None,
padding='corner',
dilation=1,
bias=False,
norm_cfg=dict(type='LN'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
if stride:
stride = stride
else:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adap_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding)
# disable the padding of unfold
padding = 0
else:
self.adap_padding = None
padding = to_2tuple(padding)
self.sampler = nn.Unfold(
kernel_size=kernel_size,
dilation=dilation,
padding=padding,
stride=stride)
sample_dim = kernel_size[0] * kernel_size[1] * in_channels
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
else:
self.norm = None
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)
def forward(self, x, input_size):
"""
Args:
x (Tensor): Has shape (B, H*W, C_in).
input_size (tuple[int]): The spatial shape of x, arrange as (H, W).
Default: None.
Returns:
tuple: Contains merged results and its spatial shape.
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
- out_size (tuple[int]): Spatial shape of x, arrange as
(Merged_H, Merged_W).
"""
B, L, C = x.shape
assert isinstance(input_size, Sequence), f'Expect ' \
f'input_size is ' \
f'`Sequence` ' \
f'but get {input_size}'
H, W = input_size
assert L == H * W, 'input feature has wrong size'
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W
# Use nn.Unfold to merge patch. About 25% faster than original method,
# but need to modify pretrained model for compatibility
if self.adap_padding:
x = self.adap_padding(x)
H, W = x.shape[-2:]
x = self.sampler(x)
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] *
(self.sampler.kernel_size[0] - 1) -
1) // self.sampler.stride[0] + 1
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] *
(self.sampler.kernel_size[1] - 1) -
1) // self.sampler.stride[1] + 1
output_size = (out_h, out_w)
x = x.transpose(1, 2) # B, H/2*W/2, 4*C
x = self.norm(x) if self.norm else x
x = self.reduction(x)
return x, output_size
class ScaleNorm(nn.Module):
"""Scale Norm.
Args:
dim (int): The dimension of the scale vector.
eps (float, optional): The minimum value in clamp. Defaults to 1e-5.
Reference:
`Transformers without Tears: Improving the Normalization
of Self-Attention <https://arxiv.org/abs/1910.05895>`_
"""
def __init__(self, dim, eps=1e-5):
super().__init__()
self.scale = dim**-0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(1))
def forward(self, x):
"""Forward function.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: The tensor after applying scale norm.
"""
if torch.onnx.is_in_onnx_export() and \
digit_version(TORCH_VERSION) >= digit_version('1.12'):
norm = torch.linalg.norm(x, dim=-1, keepdim=True)
else:
norm = torch.norm(x, dim=-1, keepdim=True)
norm = norm * self.scale
return x / norm.clamp(min=self.eps) * self.g
class SinePositionalEncoding(nn.Module):
"""Sine Positional Encoding Module. This module implements sine positional
encoding, which is commonly used in transformer-based models to add
positional information to the input sequences. It uses sine and cosine
functions to create positional embeddings for each element in the input
sequence.
Args:
out_channels (int): The number of features in the input sequence.
temperature (int): A temperature parameter used to scale
the positional encodings. Defaults to 10000.
spatial_dim (int): The number of spatial dimension of input
feature. 1 represents sequence data and 2 represents grid data.
Defaults to 1.
learnable (bool): Whether to optimize the frequency base. Defaults
to False.
eval_size (int, tuple[int], optional): The fixed spatial size of
input features. Defaults to None.
"""
def __init__(
self,
out_channels: int,
spatial_dim: int = 1,
temperature: int = 1e5,
learnable: bool = False,
eval_size: Optional[Union[int, Sequence[int]]] = None,
) -> None:
super().__init__()
assert out_channels % 2 == 0
assert temperature > 0
self.spatial_dim = spatial_dim
self.out_channels = out_channels
self.temperature = temperature
self.eval_size = eval_size
self.learnable = learnable
pos_dim = out_channels // 2
dim_t = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
dim_t = self.temperature**(dim_t)
if not learnable:
self.register_buffer('dim_t', dim_t)
else:
self.dim_t = nn.Parameter(dim_t.detach())
# set parameters
if eval_size:
if hasattr(self, f'pos_enc_{eval_size}'):
delattr(self, f'pos_enc_{eval_size}')
pos_enc = self.generate_pos_encoding(size=eval_size)
self.register_buffer(f'pos_enc_{eval_size}', pos_enc)
def forward(self, *args, **kwargs):
return self.generate_pos_encoding(*args, **kwargs)
def generate_pos_encoding(self,
size: Union[int, Sequence[int]] = None,
position: Optional[Tensor] = None):
"""Generate positional encoding for input features.
Args:
size (int or tuple[int]): Size of the input features. Required
if position is None.
position (Tensor, optional): Position tensor. Required if size
is None.
"""
assert (size is not None) ^ (position is not None)
if (not (self.learnable
and self.training)) and size is not None and hasattr(
self, f'pos_enc_{size}'):
return getattr(self, f'pos_enc_{size}')
if self.spatial_dim == 1:
if size is not None:
if isinstance(size, (tuple, list)):
size = size[0]
position = torch.arange(
size, dtype=torch.float32, device=self.dim_t.device)
dim_t = self.dim_t.reshape(*((1, ) * position.ndim), -1)
freq = position.unsqueeze(-1) / dim_t
pos_enc = torch.cat((freq.cos(), freq.sin()), dim=-1)
elif self.spatial_dim == 2:
if size is not None:
if isinstance(size, (tuple, list)):
h, w = size[:2]
elif isinstance(size, (int, float)):
h, w = int(size), int(size)
else:
raise ValueError(f'got invalid type {type(size)} for size')
grid_h, grid_w = torch.meshgrid(
torch.arange(
int(h), dtype=torch.float32, device=self.dim_t.device),
torch.arange(
int(w), dtype=torch.float32, device=self.dim_t.device))
grid_h, grid_w = grid_h.flatten(), grid_w.flatten()
else:
assert position.size(-1) == 2
grid_h, grid_w = torch.unbind(position, dim=-1)
dim_t = self.dim_t.reshape(*((1, ) * grid_h.ndim), -1)
freq_h = grid_h.unsqueeze(-1) / dim_t
freq_w = grid_w.unsqueeze(-1) / dim_t
pos_enc_h = torch.cat((freq_h.cos(), freq_h.sin()), dim=-1)
pos_enc_w = torch.cat((freq_w.cos(), freq_w.sin()), dim=-1)
pos_enc = torch.stack((pos_enc_h, pos_enc_w), dim=-1)
return pos_enc
@staticmethod
def apply_additional_pos_enc(feature: Tensor,
pos_enc: Tensor,
spatial_dim: int = 1):
"""Apply additional positional encoding to input features.
Args:
feature (Tensor): Input feature tensor.
pos_enc (Tensor): Positional encoding tensor.
spatial_dim (int): Spatial dimension of input features.
"""
assert spatial_dim in (1, 2), f'the argument spatial_dim must be ' \
f'either 1 or 2, but got {spatial_dim}'
if spatial_dim == 2:
pos_enc = pos_enc.flatten(-2)
for _ in range(feature.ndim - pos_enc.ndim):
pos_enc = pos_enc.unsqueeze(0)
return feature + pos_enc
@staticmethod
def apply_rotary_pos_enc(feature: Tensor,
pos_enc: Tensor,
spatial_dim: int = 1):
"""Apply rotary positional encoding to input features.
Args:
feature (Tensor): Input feature tensor.
pos_enc (Tensor): Positional encoding tensor.
spatial_dim (int): Spatial dimension of input features.
"""
assert spatial_dim in (1, 2), f'the argument spatial_dim must be ' \
f'either 1 or 2, but got {spatial_dim}'
for _ in range(feature.ndim - pos_enc.ndim + spatial_dim - 1):
pos_enc = pos_enc.unsqueeze(0)
x1, x2 = torch.chunk(feature, 2, dim=-1)
if spatial_dim == 1:
cos, sin = torch.chunk(pos_enc, 2, dim=-1)
feature = torch.cat((x1 * cos - x2 * sin, x2 * cos + x1 * sin),
dim=-1)
elif spatial_dim == 2:
pos_enc_h, pos_enc_w = torch.unbind(pos_enc, dim=-1)
cos_h, sin_h = torch.chunk(pos_enc_h, 2, dim=-1)
cos_w, sin_w = torch.chunk(pos_enc_w, 2, dim=-1)
feature = torch.cat(
(x1 * cos_h - x2 * sin_h, x1 * cos_w + x2 * sin_w), dim=-1)
return feature
class ChannelWiseScale(nn.Module):
"""Scale vector by element multiplications.
Args:
dim (int): The dimension of the scale vector.
init_value (float, optional): The initial value of the scale vector.
Defaults to 1.0.
trainable (bool, optional): Whether the scale vector is trainable.
Defaults to True.
"""
def __init__(self, dim, init_value=1., trainable=True):
super().__init__()
self.scale = nn.Parameter(
init_value * torch.ones(dim), requires_grad=trainable)
def forward(self, x):
"""Forward function."""
return x * self.scale
class GAUEncoder(BaseModule):
"""Gated Attention Unit (GAU) Encoder.
Args:
in_token_dims (int): The input token dimension.
out_token_dims (int): The output token dimension.
expansion_factor (int, optional): The expansion factor of the
intermediate token dimension. Defaults to 2.
s (int, optional): The self-attention feature dimension.
Defaults to 128.
eps (float, optional): The minimum value in clamp. Defaults to 1e-5.
dropout_rate (float, optional): The dropout rate. Defaults to 0.0.
drop_path (float, optional): The drop path rate. Defaults to 0.0.
act_fn (str, optional): The activation function which should be one
of the following options:
- 'ReLU': ReLU activation.
- 'SiLU': SiLU activation.
Defaults to 'SiLU'.
bias (bool, optional): Whether to use bias in linear layers.
Defaults to False.
pos_enc (bool, optional): Whether to use rotary position
embedding. Defaults to False.
spatial_dim (int, optional): The spatial dimension of inputs
Reference:
`Transformer Quality in Linear Time
<https://arxiv.org/abs/2202.10447>`_
"""
def __init__(self,
in_token_dims,
out_token_dims,
expansion_factor=2,
s=128,
eps=1e-5,
dropout_rate=0.,
drop_path=0.,
act_fn='SiLU',
bias=False,
pos_enc: str = 'none',
spatial_dim: int = 1):
super(GAUEncoder, self).__init__()
self.s = s
self.bias = bias
self.pos_enc = pos_enc
self.in_token_dims = in_token_dims
self.spatial_dim = spatial_dim
self.drop_path = DropPath(drop_path) \
if drop_path > 0. else nn.Identity()
self.e = int(in_token_dims * expansion_factor)
self.o = nn.Linear(self.e, out_token_dims, bias=bias)
self._build_layers()
self.ln = ScaleNorm(in_token_dims, eps=eps)
nn.init.xavier_uniform_(self.uv.weight)
if act_fn == 'SiLU':
assert digit_version(TORCH_VERSION) >= digit_version('1.7.0'), \
'SiLU activation requires PyTorch version >= 1.7'
self.act_fn = nn.SiLU(True)
else:
self.act_fn = nn.ReLU(True)
if in_token_dims == out_token_dims:
self.shortcut = True
self.res_scale = ChannelWiseScale(in_token_dims)
else:
self.shortcut = False
self.sqrt_s = math.sqrt(s)
self.dropout_rate = dropout_rate
if dropout_rate > 0.:
self.dropout = nn.Dropout(dropout_rate)
def _build_layers(self):
self.uv = nn.Linear(
self.in_token_dims, 2 * self.e + self.s, bias=self.bias)
self.gamma = nn.Parameter(torch.rand((2, self.s)))
self.beta = nn.Parameter(torch.rand((2, self.s)))
def _forward(self, x, mask=None, pos_enc=None):
"""GAU Forward function."""
x = self.ln(x)
# [B, K, in_token_dims] -> [B, K, e + e + s]
uv = self.uv(x)
uv = self.act_fn(uv)
# [B, K, e + e + s] -> [B, K, e], [B, K, e], [B, K, s]
u, v, base = torch.split(uv, [self.e, self.e, self.s], dim=-1)
# [B, K, 1, s] * [1, 1, 2, s] + [2, s] -> [B, K, 2, s]
dim = base.ndim - self.gamma.ndim + 1
gamma = self.gamma.view(*((1, ) * dim), *self.gamma.size())
beta = self.beta.view(*((1, ) * dim), *self.beta.size())
base = base.unsqueeze(-2) * gamma + beta
# [B, K, 2, s] -> [B, K, s], [B, K, s]
q, k = torch.unbind(base, dim=-2)
if self.pos_enc == 'rope':
q = SinePositionalEncoding.apply_rotary_pos_enc(
q, pos_enc, self.spatial_dim)
k = SinePositionalEncoding.apply_rotary_pos_enc(
k, pos_enc, self.spatial_dim)
elif self.pos_enc == 'add':
pos_enc = pos_enc.reshape(*((1, ) * (q.ndim - 2)), q.size(-2),
q.size(-1))
q = q + pos_enc
k = k + pos_enc
# [B, K, s].transpose(-1, -2) -> [B, s, K]
# [B, K, s] x [B, s, K] -> [B, K, K]
qk = torch.matmul(q, k.transpose(-1, -2))
# [B, K, K]
kernel = torch.square(F.relu(qk / self.sqrt_s))
if mask is not None:
kernel = kernel * mask
if self.dropout_rate > 0.:
kernel = self.dropout(kernel)
# [B, K, K] x [B, K, e] -> [B, K, e]
x = u * torch.matmul(kernel, v)
# [B, K, e] -> [B, K, out_token_dims]
x = self.o(x)
return x
def forward(self, x, mask=None, pos_enc=None):
"""Forward function."""
out = self.drop_path(self._forward(x, mask=mask, pos_enc=pos_enc))
if self.shortcut:
return self.res_scale(x) + out
else:
return out
class DetrTransformerEncoder(BaseModule):
"""Encoder of DETR.
Args:
num_layers (int): Number of encoder layers.
layer_cfg (:obj:`ConfigDict` or dict): the config of each encoder
layer. All the layers will share the same config.
num_cp (int): Number of checkpointing blocks in encoder layer.
Default to -1.
init_cfg (:obj:`ConfigDict` or dict, optional): the config to control
the initialization. Defaults to None.
"""
def __init__(self,
num_layers: int,
layer_cfg: ConfigType,
num_cp: int = -1,
init_cfg: OptConfigType = None) -> None:
super().__init__(init_cfg=init_cfg)
self.num_layers = num_layers
self.layer_cfg = layer_cfg
self.num_cp = num_cp
assert self.num_cp <= self.num_layers
self._init_layers()
def _init_layers(self) -> None:
"""Initialize encoder layers."""
self.layers = ModuleList([
DetrTransformerEncoderLayer(**self.layer_cfg)
for _ in range(self.num_layers)
])
if self.num_cp > 0:
if checkpoint_wrapper is None:
raise NotImplementedError(
'If you want to reduce GPU memory usage, \
please install fairscale by executing the \
following command: pip install fairscale.')
for i in range(self.num_cp):
self.layers[i] = checkpoint_wrapper(self.layers[i])
self.embed_dims = self.layers[0].embed_dims
def forward(self, query: Tensor, query_pos: Tensor,
key_padding_mask: Tensor, **kwargs) -> Tensor:
"""Forward function of encoder.
Args:
query (Tensor): Input queries of encoder, has shape
(bs, num_queries, dim).
query_pos (Tensor): The positional embeddings of the queries, has
shape (bs, num_queries, dim).
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
input. ByteTensor, has shape (bs, num_queries).
Returns:
Tensor: Has shape (bs, num_queries, dim) if `batch_first` is
`True`, otherwise (num_queries, bs, dim).
"""
for layer in self.layers:
query = layer(query, query_pos, key_padding_mask, **kwargs)
return query
class DetrTransformerEncoderLayer(BaseModule):
"""Implements encoder layer in DETR transformer.
Args:
self_attn_cfg (:obj:`ConfigDict` or dict, optional): Config for self
attention.
ffn_cfg (:obj:`ConfigDict` or dict, optional): Config for FFN.
norm_cfg (:obj:`ConfigDict` or dict, optional): Config for
normalization layers. All the layers will share the same
config. Defaults to `LN`.
init_cfg (:obj:`ConfigDict` or dict, optional): Config to control
the initialization. Defaults to None.
"""
def __init__(self,
self_attn_cfg: OptConfigType = dict(
embed_dims=256, num_heads=8, dropout=0.0),
ffn_cfg: OptConfigType = dict(
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
ffn_drop=0.,
act_cfg=dict(type='ReLU', inplace=True)),
norm_cfg: OptConfigType = dict(type='LN'),
init_cfg: OptConfigType = None) -> None:
super().__init__(init_cfg=init_cfg)
self.self_attn_cfg = self_attn_cfg
if 'batch_first' not in self.self_attn_cfg:
self.self_attn_cfg['batch_first'] = True
else:
assert self.self_attn_cfg['batch_first'] is True, 'First \
dimension of all DETRs in mmdet is `batch`, \
please set `batch_first` flag.'
self.ffn_cfg = ffn_cfg
self.norm_cfg = norm_cfg
self._init_layers()
def _init_layers(self) -> None:
"""Initialize self-attention, FFN, and normalization."""
self.self_attn = MultiheadAttention(**self.self_attn_cfg)
self.embed_dims = self.self_attn.embed_dims
self.ffn = FFN(**self.ffn_cfg)
norms_list = [
build_norm_layer(self.norm_cfg, self.embed_dims)[1]
for _ in range(2)
]
self.norms = ModuleList(norms_list)
def forward(self, query: Tensor, query_pos: Tensor,
key_padding_mask: Tensor, **kwargs) -> Tensor:
"""Forward function of an encoder layer.
Args:
query (Tensor): The input query, has shape (bs, num_queries, dim).
query_pos (Tensor): The positional encoding for query, with
the same shape as `query`.
key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
input. ByteTensor. has shape (bs, num_queries).
Returns:
Tensor: forwarded results, has shape (bs, num_queries, dim).
"""
query = self.self_attn(
query=query,
key=query,
value=query,
query_pos=query_pos,
key_pos=query_pos,
key_padding_mask=key_padding_mask,
**kwargs)
query = self.norms[0](query)
query = self.ffn(query)
query = self.norms[1](query)
return query
|