File size: 29,095 Bytes
a249588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Tuple, Union

import cv2
import mmcv
import numpy as np
from matplotlib import pyplot as plt
from mmengine.dist import master_only
from mmengine.structures import InstanceData

from mmpose.apis import convert_keypoint_definition
from mmpose.registry import VISUALIZERS
from mmpose.structures import PoseDataSample
from . import PoseLocalVisualizer


@VISUALIZERS.register_module()
class Pose3dLocalVisualizer(PoseLocalVisualizer):
    """MMPose 3d Local Visualizer.

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
        image (np.ndarray, optional): the origin image to draw. The format
            should be RGB. Defaults to ``None``
        vis_backends (list, optional): Visual backend config list. Defaults to
            ``None``
        save_dir (str, optional): Save file dir for all storage backends.
            If it is ``None``, the backend storage will not save any data.
            Defaults to ``None``
        bbox_color (str, tuple(int), optional): Color of bbox lines.
            The tuple of color should be in BGR order. Defaults to ``'green'``
        kpt_color (str, tuple(tuple(int)), optional): Color of keypoints.
            The tuple of color should be in BGR order. Defaults to ``'red'``
        link_color (str, tuple(tuple(int)), optional): Color of skeleton.
            The tuple of color should be in BGR order. Defaults to ``None``
        line_width (int, float): The width of lines. Defaults to 1
        radius (int, float): The radius of keypoints. Defaults to 4
        show_keypoint_weight (bool): Whether to adjust the transparency
            of keypoints according to their score. Defaults to ``False``
        alpha (int, float): The transparency of bboxes. Defaults to ``0.8``
        det_kpt_color (str, tuple(tuple(int)), optional): Keypoints color
             info for detection. Defaults to ``None``
        det_dataset_skeleton (list): Skeleton info for detection. Defaults to
            ``None``
        det_dataset_link_color (list): Link color for detection. Defaults to
            ``None``
    """

    def __init__(
            self,
            name: str = 'visualizer',
            image: Optional[np.ndarray] = None,
            vis_backends: Optional[Dict] = None,
            save_dir: Optional[str] = None,
            bbox_color: Optional[Union[str, Tuple[int]]] = 'green',
            kpt_color: Optional[Union[str, Tuple[Tuple[int]]]] = 'red',
            link_color: Optional[Union[str, Tuple[Tuple[int]]]] = None,
            text_color: Optional[Union[str, Tuple[int]]] = (255, 255, 255),
            skeleton: Optional[Union[List, Tuple]] = None,
            line_width: Union[int, float] = 1,
            radius: Union[int, float] = 3,
            show_keypoint_weight: bool = False,
            backend: str = 'opencv',
            alpha: float = 0.8,
            det_kpt_color: Optional[Union[str, Tuple[Tuple[int]]]] = None,
            det_dataset_skeleton: Optional[Union[str,
                                                 Tuple[Tuple[int]]]] = None,
            det_dataset_link_color: Optional[np.ndarray] = None):
        super().__init__(name, image, vis_backends, save_dir, bbox_color,
                         kpt_color, link_color, text_color, skeleton,
                         line_width, radius, show_keypoint_weight, backend,
                         alpha)
        self.det_kpt_color = det_kpt_color
        self.det_dataset_skeleton = det_dataset_skeleton
        self.det_dataset_link_color = det_dataset_link_color

    def _draw_3d_data_samples(self,
                              image: np.ndarray,
                              pose_samples: PoseDataSample,
                              draw_gt: bool = True,
                              kpt_thr: float = 0.3,
                              num_instances=-1,
                              axis_azimuth: float = 70,
                              axis_limit: float = 1.7,
                              axis_dist: float = 10.0,
                              axis_elev: float = 15.0,
                              show_kpt_idx: bool = False,
                              scores_2d: Optional[np.ndarray] = None):
        """Draw keypoints and skeletons (optional) of GT or prediction.

        Args:
            image (np.ndarray): The image to draw.
            instances (:obj:`InstanceData`): Data structure for
                instance-level annotations or predictions.
            draw_gt (bool): Whether to draw GT PoseDataSample. Default to
                ``True``
            kpt_thr (float, optional): Minimum threshold of keypoints
                to be shown. Default: 0.3.
            num_instances (int): Number of instances to be shown in 3D. If
                smaller than 0, all the instances in the pose_result will be
                shown. Otherwise, pad or truncate the pose_result to a length
                of num_instances.
            axis_azimuth (float): axis azimuth angle for 3D visualizations.
            axis_dist (float): axis distance for 3D visualizations.
            axis_elev (float): axis elevation view angle for 3D visualizations.
            axis_limit (float): The axis limit to visualize 3d pose. The xyz
                range will be set as:
                - x: [x_c - axis_limit/2, x_c + axis_limit/2]
                - y: [y_c - axis_limit/2, y_c + axis_limit/2]
                - z: [0, axis_limit]
                Where x_c, y_c is the mean value of x and y coordinates
            show_kpt_idx (bool): Whether to show the index of keypoints.
                Defaults to ``False``
            scores_2d (np.ndarray, optional): Keypoint scores of 2d estimation
                that will be used to filter 3d instances.

        Returns:
            Tuple(np.ndarray): the drawn image which channel is RGB.
        """
        vis_width = max(image.shape)
        vis_height = vis_width

        if 'pred_instances' in pose_samples:
            pred_instances = pose_samples.pred_instances
        else:
            pred_instances = InstanceData()
        if num_instances < 0:
            if 'keypoints' in pred_instances:
                num_instances = len(pred_instances)
            else:
                num_instances = 0
        else:
            if len(pred_instances) > num_instances:
                pred_instances_ = InstanceData()
                for k in pred_instances.keys():
                    new_val = pred_instances[k][:num_instances]
                    pred_instances_.set_field(new_val, k)
                pred_instances = pred_instances_
            elif num_instances < len(pred_instances):
                num_instances = len(pred_instances)

        num_fig = num_instances
        if draw_gt:
            vis_width *= 2
            num_fig *= 2

        plt.ioff()
        fig = plt.figure(
            figsize=(vis_width * num_instances * 0.01, vis_height * 0.01))

        def _draw_3d_instances_kpts(keypoints,
                                    scores,
                                    scores_2d,
                                    keypoints_visible,
                                    fig_idx,
                                    show_kpt_idx,
                                    title=None):

            for idx, (kpts, score, score_2d) in enumerate(
                    zip(keypoints, scores, scores_2d)):

                valid = np.logical_and(score >= kpt_thr, score_2d >= kpt_thr,
                                       np.any(~np.isnan(kpts), axis=-1))

                kpts_valid = kpts[valid]
                ax = fig.add_subplot(
                    1, num_fig, fig_idx * (idx + 1), projection='3d')
                ax.view_init(elev=axis_elev, azim=axis_azimuth)
                ax.set_aspect('auto')
                ax.set_xticks([])
                ax.set_yticks([])
                ax.set_zticks([])
                ax.set_xticklabels([])
                ax.set_yticklabels([])
                ax.set_zticklabels([])
                if title:
                    ax.set_title(f'{title} ({idx})')
                ax.dist = axis_dist

                x_c = np.mean(kpts_valid[:, 0]) if valid.any() else 0
                y_c = np.mean(kpts_valid[:, 1]) if valid.any() else 0
                z_c = np.mean(kpts_valid[:, 2]) if valid.any() else 0

                ax.set_xlim3d([x_c - axis_limit / 2, x_c + axis_limit / 2])
                ax.set_ylim3d([y_c - axis_limit / 2, y_c + axis_limit / 2])
                ax.set_zlim3d(
                    [min(0, z_c - axis_limit / 2), z_c + axis_limit / 2])

                if self.kpt_color is None or isinstance(self.kpt_color, str):
                    kpt_color = [self.kpt_color] * len(kpts)
                elif len(self.kpt_color) == len(kpts):
                    kpt_color = self.kpt_color
                else:
                    raise ValueError(
                        f'the length of kpt_color '
                        f'({len(self.kpt_color)}) does not matches '
                        f'that of keypoints ({len(kpts)})')

                x_3d, y_3d, z_3d = np.split(kpts_valid[:, :3], [1, 2], axis=1)

                kpt_color = kpt_color[valid] / 255.

                ax.scatter(x_3d, y_3d, z_3d, marker='o', c=kpt_color)

                if show_kpt_idx:
                    for kpt_idx in range(len(x_3d)):
                        ax.text(x_3d[kpt_idx][0], y_3d[kpt_idx][0],
                                z_3d[kpt_idx][0], str(kpt_idx))

                if self.skeleton is not None and self.link_color is not None:
                    if self.link_color is None or isinstance(
                            self.link_color, str):
                        link_color = [self.link_color] * len(self.skeleton)
                    elif len(self.link_color) == len(self.skeleton):
                        link_color = self.link_color
                    else:
                        raise ValueError(
                            f'the length of link_color '
                            f'({len(self.link_color)}) does not matches '
                            f'that of skeleton ({len(self.skeleton)})')

                    for sk_id, sk in enumerate(self.skeleton):
                        sk_indices = [_i for _i in sk]
                        xs_3d = kpts[sk_indices, 0]
                        ys_3d = kpts[sk_indices, 1]
                        zs_3d = kpts[sk_indices, 2]
                        kpt_score = score[sk_indices]
                        kpt_score_2d = score_2d[sk_indices]
                        if kpt_score.min() > kpt_thr and kpt_score_2d.min(
                        ) > kpt_thr:
                            # matplotlib uses RGB color in [0, 1] value range
                            _color = link_color[sk_id] / 255.
                            ax.plot(
                                xs_3d, ys_3d, zs_3d, color=_color, zdir='z')

        if 'keypoints' in pred_instances:
            keypoints = pred_instances.get('keypoints',
                                           pred_instances.keypoints)

            if 'keypoint_scores' in pred_instances:
                scores = pred_instances.keypoint_scores
            else:
                scores = np.ones(keypoints.shape[:-1])

            if scores_2d is None:
                scores_2d = np.ones(keypoints.shape[:-1])

            if 'keypoints_visible' in pred_instances:
                keypoints_visible = pred_instances.keypoints_visible
            else:
                keypoints_visible = np.ones(keypoints.shape[:-1])

            _draw_3d_instances_kpts(keypoints, scores, scores_2d,
                                    keypoints_visible, 1, show_kpt_idx,
                                    'Prediction')

        if draw_gt and 'gt_instances' in pose_samples:
            gt_instances = pose_samples.gt_instances
            if 'lifting_target' in gt_instances:
                keypoints = gt_instances.get('lifting_target',
                                             gt_instances.lifting_target)
                scores = np.ones(keypoints.shape[:-1])

                if 'lifting_target_visible' in gt_instances:
                    keypoints_visible = gt_instances.lifting_target_visible
                else:
                    keypoints_visible = np.ones(keypoints.shape[:-1])
            elif 'keypoints_gt' in gt_instances:
                keypoints = gt_instances.get('keypoints_gt',
                                             gt_instances.keypoints_gt)
                scores = np.ones(keypoints.shape[:-1])

                if 'keypoints_visible' in gt_instances:
                    keypoints_visible = gt_instances.keypoints_visible
                else:
                    keypoints_visible = np.ones(keypoints.shape[:-1])
            else:
                raise ValueError('to visualize ground truth results, '
                                 'data sample must contain '
                                 '"lifting_target" or "keypoints_gt"')

            if scores_2d is None:
                scores_2d = np.ones(keypoints.shape[:-1])

            _draw_3d_instances_kpts(keypoints, scores, scores_2d,
                                    keypoints_visible, 2, show_kpt_idx,
                                    'Ground Truth')

        # convert figure to numpy array
        fig.tight_layout()
        fig.canvas.draw()

        pred_img_data = np.frombuffer(
            fig.canvas.tostring_rgb(), dtype=np.uint8)

        if not pred_img_data.any():
            pred_img_data = np.full((vis_height, vis_width, 3), 255)
        else:
            width, height = fig.get_size_inches() * fig.get_dpi()
            pred_img_data = pred_img_data.reshape(
                int(height),
                int(width) * num_instances, 3)

        plt.close(fig)

        return pred_img_data

    def _draw_instances_kpts(self,
                             image: np.ndarray,
                             instances: InstanceData,
                             kpt_thr: float = 0.3,
                             show_kpt_idx: bool = False,
                             skeleton_style: str = 'mmpose'):
        """Draw keypoints and skeletons (optional) of GT or prediction.

        Args:
            image (np.ndarray): The image to draw.
            instances (:obj:`InstanceData`): Data structure for
                instance-level annotations or predictions.
            kpt_thr (float, optional): Minimum threshold of keypoints
                to be shown. Default: 0.3.
            show_kpt_idx (bool): Whether to show the index of keypoints.
                Defaults to ``False``
            skeleton_style (str): Skeleton style selection. Defaults to
                ``'mmpose'``

        Returns:
            np.ndarray: the drawn image which channel is RGB.
        """

        self.set_image(image)
        img_h, img_w, _ = image.shape
        scores = None

        if 'keypoints' in instances:
            keypoints = instances.get('transformed_keypoints',
                                      instances.keypoints)

            if 'keypoint_scores' in instances:
                scores = instances.keypoint_scores
            else:
                scores = np.ones(keypoints.shape[:-1])

            if 'keypoints_visible' in instances:
                keypoints_visible = instances.keypoints_visible
            else:
                keypoints_visible = np.ones(keypoints.shape[:-1])

            if skeleton_style == 'openpose':
                keypoints_info = np.concatenate(
                    (keypoints, scores[..., None], keypoints_visible[...,
                                                                     None]),
                    axis=-1)
                # compute neck joint
                neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
                # neck score when visualizing pred
                neck[:, 2:4] = np.logical_and(
                    keypoints_info[:, 5, 2:4] > kpt_thr,
                    keypoints_info[:, 6, 2:4] > kpt_thr).astype(int)
                new_keypoints_info = np.insert(
                    keypoints_info, 17, neck, axis=1)

                mmpose_idx = [
                    17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
                ]
                openpose_idx = [
                    1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
                ]
                new_keypoints_info[:, openpose_idx] = \
                    new_keypoints_info[:, mmpose_idx]
                keypoints_info = new_keypoints_info

                keypoints, scores, keypoints_visible = keypoints_info[
                    ..., :2], keypoints_info[..., 2], keypoints_info[..., 3]

            kpt_color = self.kpt_color
            if self.det_kpt_color is not None:
                kpt_color = self.det_kpt_color

            for kpts, score, visible in zip(keypoints, scores,
                                            keypoints_visible):
                kpts = np.array(kpts[..., :2], copy=False)

                if kpt_color is None or isinstance(kpt_color, str):
                    kpt_color = [kpt_color] * len(kpts)
                elif len(kpt_color) == len(kpts):
                    kpt_color = kpt_color
                else:
                    raise ValueError(f'the length of kpt_color '
                                     f'({len(kpt_color)}) does not matches '
                                     f'that of keypoints ({len(kpts)})')

                # draw each point on image
                for kid, kpt in enumerate(kpts):
                    if score[kid] < kpt_thr or not visible[
                            kid] or kpt_color[kid] is None:
                        # skip the point that should not be drawn
                        continue

                    color = kpt_color[kid]
                    if not isinstance(color, str):
                        color = tuple(int(c) for c in color)
                    transparency = self.alpha
                    if self.show_keypoint_weight:
                        transparency *= max(0, min(1, score[kid]))
                    self.draw_circles(
                        kpt,
                        radius=np.array([self.radius]),
                        face_colors=color,
                        edge_colors=color,
                        alpha=transparency,
                        line_widths=self.radius)
                    if show_kpt_idx:
                        self.draw_texts(
                            str(kid),
                            kpt,
                            colors=color,
                            font_sizes=self.radius * 3,
                            vertical_alignments='bottom',
                            horizontal_alignments='center')

                # draw links
                skeleton = self.skeleton
                if self.det_dataset_skeleton is not None:
                    skeleton = self.det_dataset_skeleton
                link_color = self.link_color
                if self.det_dataset_link_color is not None:
                    link_color = self.det_dataset_link_color
                if skeleton is not None and link_color is not None:
                    if link_color is None or isinstance(link_color, str):
                        link_color = [link_color] * len(skeleton)
                    elif len(link_color) == len(skeleton):
                        link_color = link_color
                    else:
                        raise ValueError(
                            f'the length of link_color '
                            f'({len(link_color)}) does not matches '
                            f'that of skeleton ({len(skeleton)})')

                    for sk_id, sk in enumerate(skeleton):
                        pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
                        pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
                        if not (visible[sk[0]] and visible[sk[1]]):
                            continue

                        if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0
                                or pos1[1] >= img_h or pos2[0] <= 0
                                or pos2[0] >= img_w or pos2[1] <= 0
                                or pos2[1] >= img_h or score[sk[0]] < kpt_thr
                                or score[sk[1]] < kpt_thr
                                or link_color[sk_id] is None):
                            # skip the link that should not be drawn
                            continue
                        X = np.array((pos1[0], pos2[0]))
                        Y = np.array((pos1[1], pos2[1]))
                        color = link_color[sk_id]
                        if not isinstance(color, str):
                            color = tuple(int(c) for c in color)
                        transparency = self.alpha
                        if self.show_keypoint_weight:
                            transparency *= max(
                                0, min(1, 0.5 * (score[sk[0]] + score[sk[1]])))

                        if skeleton_style == 'openpose':
                            mX = np.mean(X)
                            mY = np.mean(Y)
                            length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5
                            angle = math.degrees(
                                math.atan2(Y[0] - Y[1], X[0] - X[1]))
                            stickwidth = 2
                            polygons = cv2.ellipse2Poly(
                                (int(mX), int(mY)),
                                (int(length / 2), int(stickwidth)), int(angle),
                                0, 360, 1)

                            self.draw_polygons(
                                polygons,
                                edge_colors=color,
                                face_colors=color,
                                alpha=transparency)

                        else:
                            self.draw_lines(
                                X, Y, color, line_widths=self.line_width)

        return self.get_image(), scores

    @master_only
    def add_datasample(self,
                       name: str,
                       image: np.ndarray,
                       data_sample: PoseDataSample,
                       det_data_sample: Optional[PoseDataSample] = None,
                       draw_gt: bool = True,
                       draw_pred: bool = True,
                       draw_2d: bool = True,
                       draw_bbox: bool = False,
                       show_kpt_idx: bool = False,
                       skeleton_style: str = 'mmpose',
                       dataset_2d: str = 'coco',
                       dataset_3d: str = 'h36m',
                       convert_keypoint: bool = True,
                       axis_azimuth: float = 70,
                       axis_limit: float = 1.7,
                       axis_dist: float = 10.0,
                       axis_elev: float = 15.0,
                       num_instances: int = -1,
                       show: bool = False,
                       wait_time: float = 0,
                       out_file: Optional[str] = None,
                       kpt_thr: float = 0.3,
                       step: int = 0) -> None:
        """Draw datasample and save to all backends.

        - If GT and prediction are plotted at the same time, they are
        displayed in a stitched image where the left image is the
        ground truth and the right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and
        the images will be displayed in a local window.
        - If ``out_file`` is specified, the drawn image will be
        saved to ``out_file``. t is usually used when the display
        is not available.

        Args:
            name (str): The image identifier
            image (np.ndarray): The image to draw
            data_sample (:obj:`PoseDataSample`): The 3d data sample
                to visualize
            det_data_sample (:obj:`PoseDataSample`, optional): The 2d detection
                data sample to visualize
            draw_gt (bool): Whether to draw GT PoseDataSample. Default to
                ``True``
            draw_pred (bool): Whether to draw Prediction PoseDataSample.
                Defaults to ``True``
            draw_2d (bool): Whether to draw 2d detection results. Defaults to
                ``True``
            draw_bbox (bool): Whether to draw bounding boxes. Default to
                ``False``
            show_kpt_idx (bool): Whether to show the index of keypoints.
                Defaults to ``False``
            skeleton_style (str): Skeleton style selection. Defaults to
                ``'mmpose'``
            dataset_2d (str): Name of 2d keypoint dataset. Defaults to
                ``'CocoDataset'``
            dataset_3d (str): Name of 3d keypoint dataset. Defaults to
                ``'Human36mDataset'``
            convert_keypoint (bool): Whether to convert keypoint definition.
                Defaults to ``True``
            axis_azimuth (float): axis azimuth angle for 3D visualizations.
            axis_dist (float): axis distance for 3D visualizations.
            axis_elev (float): axis elevation view angle for 3D visualizations.
            axis_limit (float): The axis limit to visualize 3d pose. The xyz
                range will be set as:
                - x: [x_c - axis_limit/2, x_c + axis_limit/2]
                - y: [y_c - axis_limit/2, y_c + axis_limit/2]
                - z: [0, axis_limit]
                Where x_c, y_c is the mean value of x and y coordinates
            num_instances (int): Number of instances to be shown in 3D. If
                smaller than 0, all the instances in the pose_result will be
                shown. Otherwise, pad or truncate the pose_result to a length
                of num_instances. Defaults to -1
            show (bool): Whether to display the drawn image. Default to
                ``False``
            wait_time (float): The interval of show (s). Defaults to 0
            out_file (str): Path to output file. Defaults to ``None``
            kpt_thr (float, optional): Minimum threshold of keypoints
                to be shown. Default: 0.3.
            step (int): Global step value to record. Defaults to 0
        """

        det_img_data = None
        scores_2d = None

        if draw_2d:
            det_img_data = image.copy()

            # draw bboxes & keypoints
            if (det_data_sample is not None
                    and 'pred_instances' in det_data_sample):
                det_img_data, scores_2d = self._draw_instances_kpts(
                    image=det_img_data,
                    instances=det_data_sample.pred_instances,
                    kpt_thr=kpt_thr,
                    show_kpt_idx=show_kpt_idx,
                    skeleton_style=skeleton_style)
                if draw_bbox:
                    det_img_data = self._draw_instances_bbox(
                        det_img_data, det_data_sample.pred_instances)
        if scores_2d is not None and convert_keypoint:
            if scores_2d.ndim == 2:
                scores_2d = scores_2d[..., None]
            scores_2d = np.squeeze(
                convert_keypoint_definition(scores_2d, dataset_2d, dataset_3d),
                axis=-1)
        pred_img_data = self._draw_3d_data_samples(
            image.copy(),
            data_sample,
            draw_gt=draw_gt,
            num_instances=num_instances,
            axis_azimuth=axis_azimuth,
            axis_limit=axis_limit,
            show_kpt_idx=show_kpt_idx,
            axis_dist=axis_dist,
            axis_elev=axis_elev,
            scores_2d=scores_2d)

        # merge visualization results
        if det_img_data is not None:
            width = max(pred_img_data.shape[1] - det_img_data.shape[1], 0)
            height = max(pred_img_data.shape[0] - det_img_data.shape[0], 0)
            det_img_data = cv2.copyMakeBorder(
                det_img_data,
                height // 2,
                (height // 2 + 1) if height % 2 == 1 else height // 2,
                width // 2, (width // 2 + 1) if width % 2 == 1 else width // 2,
                cv2.BORDER_CONSTANT,
                value=(255, 255, 255))
            drawn_img = np.concatenate((det_img_data, pred_img_data), axis=1)
        else:
            drawn_img = pred_img_data

        # It is convenient for users to obtain the drawn image.
        # For example, the user wants to obtain the drawn image and
        # save it as a video during video inference.
        self.set_image(drawn_img)

        if show:
            self.show(drawn_img, win_name=name, wait_time=wait_time)

        if out_file is not None:
            mmcv.imwrite(drawn_img[..., ::-1], out_file)
        else:
            # save drawn_img to backends
            self.add_image(name, drawn_img, step)

        return self.get_image()