Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,843 Bytes
a249588 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
"""
Adapted from "The Color Blind Simulation function" by Matthew Wickline
and the Human - Computer Interaction Resource Network (http://hcirn.com/), 2000 - 2001.
"""
import numpy as np
rBlind = {
"protan": {"cpu": 0.735, "cpv": 0.265, "am": 1.273463, "ayi": -0.073894},
"deutan": {"cpu": 1.14, "cpv": -0.14, "am": 0.968437, "ayi": 0.003331},
"tritan": {"cpu": 0.171, "cpv": -0.003, "am": 0.062921, "ayi": 0.292119},
}
def rgb2xyz(rgb):
r = rgb[0]
g = rgb[1]
b = rgb[2]
x = 0.430574 * r + 0.341550 * g + 0.178325 * b
y = 0.222015 * r + 0.706655 * g + 0.071330 * b
z = 0.020183 * r + 0.129553 * g + 0.939180 * b
return x, y, z
def xyz2rgb(xyz):
x = xyz[0]
y = xyz[1]
z = xyz[2]
r = 3.063218 * x - 1.393325 * y - 0.475802 * z
g = -0.969243 * x + 1.875966 * y + 0.041555 * z
b = 0.067871 * x - 0.228834 * y + 1.069251 * z
return r, g, b
def anomylize(a, b):
v = 1.75
d = v * 1 + 1
return (
(v * b[0] + a[0] * 1) / d,
(v * b[1] + a[1] * 1) / d,
(v * b[2] + a[2] * 1) / d,
)
def monochrome(rgb):
z = rgb[0] * 0.299 + rgb[1] * 0.587 + rgb[2] * 0.114
return z, z, z
def blindMK(rgb, t):
gamma = 2.2
wx = 0.312713
wy = 0.329016
wz = 0.358271
r = rgb[0]
g = rgb[1]
b = rgb[2]
c_rgb = (r**gamma, g**gamma, b**gamma)
c_xyz = rgb2xyz(c_rgb)
sum_xyz = sum(c_xyz)
c_u = 0
c_v = 0
if sum_xyz != 0:
c_u = c_xyz[0] / sum_xyz
c_v = c_xyz[1] / sum_xyz
nx = wx * c_xyz[1] / wy
nz = wz * c_xyz[1] / wy
d_y = 0
if c_u < rBlind[t]["cpu"]:
clm = (rBlind[t]["cpv"] - c_v) / (rBlind[t]["cpu"] - c_u)
else:
clm = (c_v - rBlind[t]["cpv"]) / (c_u - rBlind[t]["cpu"])
clyi = c_v - c_u * clm
d_u = (rBlind[t]["ayi"] - clyi) / (clm - rBlind[t]["am"])
d_v = (clm * d_u) + clyi
s_x = d_u * c_xyz[1] / d_v
s_y = c_xyz[1]
s_z = (1 - (d_u + d_v)) * c_xyz[1] / d_v
s_rgb = xyz2rgb((s_x, s_y, s_z))
d_x = nx - s_x
d_z = nz - s_z
d_rgb = xyz2rgb((d_x, d_y, d_z))
if d_rgb[0]:
const = 0 if s_rgb[0] < 0 else 1
adjr = (const - s_rgb[0]) / d_rgb[0]
else:
adjr = 0
if d_rgb[1]:
const = 0 if s_rgb[1] < 0 else 1
adjg = (const - s_rgb[1]) / d_rgb[1]
else:
adjg = 0
if d_rgb[2]:
const = 0 if s_rgb[2] < 0 else 1
adjb = (const - s_rgb[2]) / d_rgb[2]
else:
adjb = 0
adjust = max(
[
0 if adjr > 1 or adjr < 0 else adjr,
0 if adjg > 1 or adjg < 0 else adjg,
0 if adjb > 1 or adjb < 0 else adjb,
]
)
s_r = s_rgb[0] + (adjust * d_rgb[0])
s_g = s_rgb[1] + (adjust * d_rgb[1])
s_b = s_rgb[2] + (adjust * d_rgb[2])
def z(v):
if v <= 0:
const = 0.0
elif v >= 1:
const = 1.0
else:
const = v ** (1 / gamma)
return const
return z(s_r), z(s_g), z(s_b)
fBlind = {
"Normal": lambda v: v,
"Protanopia": lambda v: blindMK(v, "protan"),
"Protanomaly": lambda v: anomylize(v, blindMK(v, "protan")),
"Deuteranopia": lambda v: blindMK(v, "deutan"),
"Deuteranomaly": lambda v: anomylize(v, blindMK(v, "deutan")),
"Tritanopia": lambda v: blindMK(v, "tritan"),
"Tritanomaly": lambda v: anomylize(v, blindMK(v, "tritan")),
"Achromatopsia": lambda v: monochrome(v),
"Achromatomaly": lambda v: anomylize(v, monochrome(v)),
}
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
def simulate_image(img_path, colorblind_type):
"""
:param img_path:
:param colorblind_type: Type of colourblindness to simulate, can be:
* 'Normal': Normal vision
* 'Protanopia': Red-green colorblindness (1% males)
* 'Protanomaly': Red-green colorblindness (1% males, 0.01% females)
* 'Deuteranopia': Red-green colorblindness (1% males)
* 'Deuteranomaly': Red-green colorblindness (most common type: 6% males,
0.4% females)
* 'Tritanopia': Blue-yellow colourblindness (<1% males and females)
* 'Tritanomaly' Blue-yellow colourblindness (0.01% males and females)
* 'Achromatopsia': Total colourblindness
* 'Achromatomaly': Total colourblindness
:return:
"""
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
filter_function = fBlind[colorblind_type]
img = mpimg.imread(img_path)
n_rows = img.shape[0]
n_columns = img.shape[1]
filtered_img = np.zeros((n_rows, n_columns, 3))
for r in range(n_rows):
for c in range(n_columns):
filtered_img[r, c] = filter_function(img[r, c, 0:3])
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
axes[0].imshow(img)
axes[1].imshow(filtered_img)
axes[0].axis("off")
axes[1].axis("off")
axes[0].set_title("Normal Vision")
axes[1].set_title("With " + colorblind_type)
plt.show()
def colorblind_filter(color, colorblind_type="Deuteranomaly"):
"""
Transforms an (r,g,b) colour into a simulation of how a person with colourblindnes
would see that colour.
:param color: rgb colour tuple to convert
:param colorblind_type: Type of colourblindness to simulate, can be:
* 'Normal': Normal vision
* 'Protanopia': Red-green colorblindness (1% males)
* 'Protanomaly': Red-green colorblindness (1% males, 0.01% females)
* 'Deuteranopia': Red-green colorblindness (1% males)
* 'Deuteranomaly': Red-green colorblindness (most common type: 6% males,
0.4% females)
* 'Tritanopia': Blue-yellow colourblindness (<1% males and females)
* 'Tritanomaly' Blue-yellow colourblindness (0.01% males and females)
* 'Achromatopsia': Total colourblindness
* 'Achromatomaly': Total colourblindness
:return:
"""
filter_function = fBlind[colorblind_type]
return filter_function(color)
def simulate_colors(colors, colorblind_type="Deuteranomaly", one_row=None, show=True):
"""
Simulate the appearance of colors with and without colourblindness.
:param colors: A list of (r,g,b) colour tuples, with r, g andb floats between 0
and 1.
:param colorblind_type: Type of colourblindness to simulate, can be:
* 'Normal': Normal vision
* 'Protanopia': Red-green colorblindness (1% males)
* 'Protanomaly': Red-green colorblindness (1% males, 0.01% females)
* 'Deuteranopia': Red-green colorblindness (1% males)
* 'Deuteranomaly': Red-green colorblindness (most common type: 6% males,
0.4% females)
* 'Tritanopia': Blue-yellow colourblindness (<1% males and females)
* 'Tritanomaly' Blue-yellow colourblindness (0.01% males and females)
* 'Achromatopsia': Total colourblindness
* 'Achromatomaly': Total colourblindness
:param one_row: If True display colours on one row, if False as a grid. If
one_row=None a grid is used when there are more than 8 colours.
:param show: if True, calls ``plt.show()``.
:return:
"""
import matplotlib.pyplot as plt
from distinctipy import distinctipy
filtered_colors = [colorblind_filter(color, colorblind_type) for color in colors]
fig, axes = plt.subplots(1, 2, figsize=(8, 4))
distinctipy.color_swatch(
colors, ax=axes[0], one_row=one_row, title="Viewed with Normal Sight"
)
distinctipy.color_swatch(
filtered_colors,
ax=axes[1],
one_row=one_row,
title="Viewed with " + colorblind_type + " Colour Blindness",
)
if show:
plt.show()
def simulate_clusters(
dataset="s2",
colorblind_type="Deuteranomaly",
colorblind_distinct=False,
show=True,
):
"""
Simulates the appearance of an example clustering dataset with and without
colourblindness.
:param dataset: The dataset to display, the options are:
* s1, s2, s3, s4: 15 clusters with increasing overlaps from s1 to s4
* a1: 20 clusters
* a2: 35 clusters
* a3: 50 clusters
* b1: 100 clusters
:param colorblind_type: Type of colourblindness to simulate, can be:
* 'Normal': Normal vision
* 'Protanopia': Red-green colorblindness (1% males)
* 'Protanomaly': Red-green colorblindness (1% males, 0.01% females)
* 'Deuteranopia': Red-green colorblindness (1% males)
* 'Deuteranomaly': Red-green colorblindness (most common type: 6% males,
0.4% females)
* 'Tritanopia': Blue-yellow colourblindness (<1% males and females)
* 'Tritanomaly' Blue-yellow colourblindness (0.01% males and females)
* 'Achromatopsia': Total colourblindness
* 'Achromatomaly': Total colourblindness
:param colorblind_distinct: If True generate colours to be as distinct as possible
for colorblind_type. Else generate colours that are as distinct as possible for
normal vision.
:param show: if True, calls ``plt.show()``.
:return:
"""
import matplotlib.pyplot as plt
import pandas as pd
from distinctipy import distinctipy
if dataset not in ("s1", "s2", "s3", "s4", "a1", "a2", "a3", "b1"):
raise ValueError("dataset must be s1, s2, s3, s4, a1, a2, a3 or b1")
URL = (
"https://raw.githubusercontent.com/alan-turing-institute/distinctipy/"
"main/distinctipy/datasets/"
)
df = pd.read_csv(URL + dataset + ".csv")
if colorblind_distinct:
orig_colors = distinctipy.get_colors(
df["cluster"].nunique(), colorblind_type=colorblind_type
)
else:
orig_colors = distinctipy.get_colors(df["cluster"].nunique())
orig_cmap = distinctipy.get_colormap(orig_colors)
filtered_colors = [
colorblind_filter(color, colorblind_type) for color in orig_colors
]
filtered_cmap = distinctipy.get_colormap(filtered_colors)
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
fig.tight_layout(rect=[0, 0.03, 1, 0.95])
fig.suptitle(str(df["cluster"].nunique()) + " clusters", fontsize=20)
axes[0].scatter(df["x"], df["y"], c=df["cluster"], cmap=orig_cmap, s=6)
axes[0].get_xaxis().set_visible(False)
axes[0].get_yaxis().set_visible(False)
axes[0].set_title("With Normal Vision")
axes[1].scatter(df["x"], df["y"], c=df["cluster"], cmap=filtered_cmap, s=6)
axes[1].get_xaxis().set_visible(False)
axes[1].get_yaxis().set_visible(False)
axes[1].set_title("With " + colorblind_type + " Colourblindness")
if show:
plt.show()
def _main():
from distinctipy import distinctipy
colors = distinctipy.get_colors(36)
simulate_colors(colors, "Deuteranomaly")
if __name__ == "__main__":
_main() |