Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import numpy as np | |
from mmpose.evaluation.functional.nms import oks_iou | |
def _compute_iou(bboxA, bboxB): | |
"""Compute the Intersection over Union (IoU) between two boxes . | |
Args: | |
bboxA (list): The first bbox info (left, top, right, bottom, score). | |
bboxB (list): The second bbox info (left, top, right, bottom, score). | |
Returns: | |
float: The IoU value. | |
""" | |
x1 = max(bboxA[0], bboxB[0]) | |
y1 = max(bboxA[1], bboxB[1]) | |
x2 = min(bboxA[2], bboxB[2]) | |
y2 = min(bboxA[3], bboxB[3]) | |
inter_area = max(0, x2 - x1) * max(0, y2 - y1) | |
bboxA_area = (bboxA[2] - bboxA[0]) * (bboxA[3] - bboxA[1]) | |
bboxB_area = (bboxB[2] - bboxB[0]) * (bboxB[3] - bboxB[1]) | |
union_area = float(bboxA_area + bboxB_area - inter_area) | |
if union_area == 0: | |
union_area = 1e-5 | |
warnings.warn('union_area=0 is unexpected') | |
iou = inter_area / union_area | |
return iou | |
def _track_by_iou(res, results_last, thr): | |
"""Get track id using IoU tracking greedily.""" | |
bbox = list(np.squeeze(res.pred_instances.bboxes, axis=0)) | |
max_iou_score = -1 | |
max_index = -1 | |
match_result = {} | |
for index, res_last in enumerate(results_last): | |
bbox_last = list(np.squeeze(res_last.pred_instances.bboxes, axis=0)) | |
iou_score = _compute_iou(bbox, bbox_last) | |
if iou_score > max_iou_score: | |
max_iou_score = iou_score | |
max_index = index | |
if max_iou_score > thr: | |
track_id = results_last[max_index].track_id | |
match_result = results_last[max_index] | |
del results_last[max_index] | |
else: | |
track_id = -1 | |
return track_id, results_last, match_result | |
def _track_by_oks(res, results_last, thr, sigmas=None): | |
"""Get track id using OKS tracking greedily.""" | |
keypoint = np.concatenate((res.pred_instances.keypoints, | |
res.pred_instances.keypoint_scores[:, :, None]), | |
axis=2) | |
keypoint = np.squeeze(keypoint, axis=0).reshape((-1)) | |
area = np.squeeze(res.pred_instances.areas, axis=0) | |
max_index = -1 | |
match_result = {} | |
if len(results_last) == 0: | |
return -1, results_last, match_result | |
keypoints_last = np.array([ | |
np.squeeze( | |
np.concatenate( | |
(res_last.pred_instances.keypoints, | |
res_last.pred_instances.keypoint_scores[:, :, None]), | |
axis=2), | |
axis=0).reshape((-1)) for res_last in results_last | |
]) | |
area_last = np.array([ | |
np.squeeze(res_last.pred_instances.areas, axis=0) | |
for res_last in results_last | |
]) | |
oks_score = oks_iou( | |
keypoint, keypoints_last, area, area_last, sigmas=sigmas) | |
max_index = np.argmax(oks_score) | |
if oks_score[max_index] > thr: | |
track_id = results_last[max_index].track_id | |
match_result = results_last[max_index] | |
del results_last[max_index] | |
else: | |
track_id = -1 | |
return track_id, results_last, match_result | |