Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple | |
import cv2 | |
import numpy as np | |
from mmpose.registry import KEYPOINT_CODECS | |
from .base import BaseKeypointCodec | |
from .utils import (generate_offset_heatmap, generate_onehot_heatmaps, | |
get_heatmap_maximum, refine_keypoints_dark_udp) | |
class OneHotHeatmap(BaseKeypointCodec): | |
r"""Generate keypoint heatmaps by Unbiased Data Processing (UDP). | |
See the paper: `The Devil is in the Details: Delving into Unbiased Data | |
Processing for Human Pose Estimation`_ by Huang et al (2020) for details. | |
Note: | |
- instance number: N | |
- keypoint number: K | |
- keypoint dimension: D | |
- image size: [w, h] | |
- heatmap size: [W, H] | |
Encoded: | |
- heatmap (np.ndarray): The generated heatmap in shape (C_out, H, W) | |
where [W, H] is the `heatmap_size`, and the C_out is the output | |
channel number which depends on the `heatmap_type`. If | |
`heatmap_type=='gaussian'`, C_out equals to keypoint number K; | |
if `heatmap_type=='combined'`, C_out equals to K*3 | |
(x_offset, y_offset and class label) | |
- keypoint_weights (np.ndarray): The target weights in shape (K,) | |
Args: | |
input_size (tuple): Image size in [w, h] | |
heatmap_size (tuple): Heatmap size in [W, H] | |
heatmap_type (str): The heatmap type to encode the keypoitns. Options | |
are: | |
- ``'gaussian'``: Gaussian heatmap | |
- ``'combined'``: Combination of a binary label map and offset | |
maps for X and Y axes. | |
sigma (float): The sigma value of the Gaussian heatmap when | |
``heatmap_type=='gaussian'``. Defaults to 2.0 | |
radius_factor (float): The radius factor of the binary label | |
map when ``heatmap_type=='combined'``. The positive region is | |
defined as the neighbor of the keypoit with the radius | |
:math:`r=radius_factor*max(W, H)`. Defaults to 0.0546875 | |
blur_kernel_size (int): The Gaussian blur kernel size of the heatmap | |
modulation in DarkPose. Defaults to 11 | |
.. _`The Devil is in the Details: Delving into Unbiased Data Processing for | |
Human Pose Estimation`: https://arxiv.org/abs/1911.07524 | |
""" | |
label_mapping_table = dict(keypoint_weights='keypoint_weights', ) | |
field_mapping_table = dict(heatmaps='heatmaps', ) | |
def __init__(self, | |
input_size: Tuple[int, int], | |
heatmap_size: Tuple[int, int], | |
heatmap_type: str = 'gaussian', | |
sigma: float = 2., | |
radius_factor: float = 0.0546875, | |
blur_kernel_size: int = 11, | |
increase_sigma_with_padding=False, | |
amap_scale: float = 1.0, | |
normalize=None, | |
) -> None: | |
super().__init__() | |
self.input_size = np.array(input_size) | |
self.heatmap_size = np.array(heatmap_size) | |
self.sigma = sigma | |
self.radius_factor = radius_factor | |
self.heatmap_type = heatmap_type | |
self.blur_kernel_size = blur_kernel_size | |
self.increase_sigma_with_padding = increase_sigma_with_padding | |
self.normalize = normalize | |
self.amap_size = self.input_size * amap_scale | |
self.scale_factor = ((self.amap_size - 1) / | |
(self.heatmap_size - 1)).astype(np.float32) | |
self.input_center = self.input_size / 2 | |
self.top_left = self.input_center - self.amap_size / 2 | |
if self.heatmap_type not in {'gaussian', 'combined'}: | |
raise ValueError( | |
f'{self.__class__.__name__} got invalid `heatmap_type` value' | |
f'{self.heatmap_type}. Should be one of ' | |
'{"gaussian", "combined"}') | |
def _kpts_to_activation_pts(self, keypoints: np.ndarray) -> np.ndarray: | |
""" | |
Transform the keypoint coordinates to the activation space. | |
In the original UDPHeatmap, activation map is the same as the input image space with | |
different resolution but in this case we allow the activation map to have different | |
size (padding) than the input image space. | |
Centers of activation map and input image space are aligned. | |
""" | |
transformed_keypoints = keypoints - self.top_left | |
transformed_keypoints = transformed_keypoints / self.scale_factor | |
return transformed_keypoints | |
def _activation_pts_to_kpts(self, keypoints: np.ndarray) -> np.ndarray: | |
""" | |
Transform the points in activation map to the keypoint coordinates. | |
In the original UDPHeatmap, activation map is the same as the input image space with | |
different resolution but in this case we allow the activation map to have different | |
size (padding) than the input image space. | |
Centers of activation map and input image space are aligned. | |
""" | |
W, H = self.heatmap_size | |
transformed_keypoints = keypoints / [W - 1, H - 1] * self.amap_size | |
transformed_keypoints += self.top_left | |
return transformed_keypoints | |
def encode(self, | |
keypoints: np.ndarray, | |
keypoints_visible: Optional[np.ndarray] = None, | |
id_similarity: Optional[float] = 0.0, | |
keypoints_visibility: Optional[np.ndarray] = None) -> dict: | |
"""Encode keypoints into heatmaps. Note that the original keypoint | |
coordinates should be in the input image space. | |
Args: | |
keypoints (np.ndarray): Keypoint coordinates in shape (N, K, D) | |
keypoints_visible (np.ndarray): Keypoint visibilities in shape | |
(N, K) | |
id_similarity (float): The usefulness of the identity information | |
for the whole pose. Defaults to 0.0 | |
keypoints_visibility (np.ndarray): The visibility bit for each | |
keypoint (N, K). Defaults to None | |
Returns: | |
dict: | |
- heatmap (np.ndarray): The generated heatmap in shape | |
(C_out, H, W) where [W, H] is the `heatmap_size`, and the | |
C_out is the output channel number which depends on the | |
`heatmap_type`. If `heatmap_type=='gaussian'`, C_out equals to | |
keypoint number K; if `heatmap_type=='combined'`, C_out | |
equals to K*3 (x_offset, y_offset and class label) | |
- keypoint_weights (np.ndarray): The target weights in shape | |
(K,) | |
""" | |
assert keypoints.shape[0] == 1, ( | |
f'{self.__class__.__name__} only support single-instance ' | |
'keypoint encoding') | |
if keypoints_visibility is None: | |
keypoints_visibility = np.zeros(keypoints.shape[:2], dtype=np.float32) | |
if keypoints_visible is None: | |
keypoints_visible = np.ones(keypoints.shape[:2], dtype=np.float32) | |
if self.heatmap_type == 'gaussian': | |
heatmaps, keypoint_weights = generate_onehot_heatmaps( | |
heatmap_size=self.heatmap_size, | |
keypoints=self._kpts_to_activation_pts(keypoints), | |
keypoints_visible=keypoints_visible, | |
sigma=self.sigma, | |
keypoints_visibility=keypoints_visibility, | |
increase_sigma_with_padding=self.increase_sigma_with_padding) | |
elif self.heatmap_type == 'combined': | |
heatmaps, keypoint_weights = generate_offset_heatmap( | |
heatmap_size=self.heatmap_size, | |
keypoints=self._kpts_to_activation_pts(keypoints), | |
keypoints_visible=keypoints_visible, | |
radius_factor=self.radius_factor) | |
else: | |
raise ValueError( | |
f'{self.__class__.__name__} got invalid `heatmap_type` value' | |
f'{self.heatmap_type}. Should be one of ' | |
'{"gaussian", "combined"}') | |
if self.normalize is not None: | |
heatmaps_sum = np.sum(heatmaps, axis=(1, 2), keepdims=False) | |
mask = heatmaps_sum > 0 | |
heatmaps[mask, :, :] = heatmaps[mask, :, :] / (heatmaps_sum[mask, None, None] + np.finfo(np.float32).eps) | |
heatmaps = heatmaps * self.normalize | |
annotated = keypoints_visible > 0 | |
heatmap_keypoints = self._kpts_to_activation_pts(keypoints) | |
in_image = np.logical_and( | |
heatmap_keypoints[:, :, 0] >= 0, | |
heatmap_keypoints[:, :, 0] < self.heatmap_size[0], | |
) | |
in_image = np.logical_and( | |
in_image, | |
heatmap_keypoints[:, :, 1] >= 0, | |
) | |
in_image = np.logical_and( | |
in_image, | |
heatmap_keypoints[:, :, 1] < self.heatmap_size[1], | |
) | |
encoded = dict( | |
heatmaps=heatmaps, | |
keypoint_weights=keypoint_weights, | |
annotated=annotated, | |
in_image=in_image, | |
keypoints_scaled=keypoints, | |
heatmap_keypoints=heatmap_keypoints, | |
identification_similarity=id_similarity, | |
) | |
return encoded | |
def decode(self, encoded: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
"""Decode keypoint coordinates from heatmaps. The decoded keypoint | |
coordinates are in the input image space. | |
Args: | |
encoded (np.ndarray): Heatmaps in shape (K, H, W) | |
Returns: | |
tuple: | |
- keypoints (np.ndarray): Decoded keypoint coordinates in shape | |
(N, K, D) | |
- scores (np.ndarray): The keypoint scores in shape (N, K). It | |
usually represents the confidence of the keypoint prediction | |
""" | |
heatmaps = encoded.copy() | |
if self.heatmap_type == 'gaussian': | |
keypoints, scores = get_heatmap_maximum(heatmaps) | |
# unsqueeze the instance dimension for single-instance results | |
keypoints = keypoints[None] | |
scores = scores[None] | |
keypoints = refine_keypoints_dark_udp( | |
keypoints, heatmaps, blur_kernel_size=self.blur_kernel_size) | |
elif self.heatmap_type == 'combined': | |
_K, H, W = heatmaps.shape | |
K = _K // 3 | |
for cls_heatmap in heatmaps[::3]: | |
# Apply Gaussian blur on classification maps | |
ks = 2 * self.blur_kernel_size + 1 | |
cv2.GaussianBlur(cls_heatmap, (ks, ks), 0, cls_heatmap) | |
# valid radius | |
radius = self.radius_factor * max(W, H) | |
x_offset = heatmaps[1::3].flatten() * radius | |
y_offset = heatmaps[2::3].flatten() * radius | |
keypoints, scores = get_heatmap_maximum(heatmaps=heatmaps[::3]) | |
index = (keypoints[..., 0] + keypoints[..., 1] * W).flatten() | |
index += W * H * np.arange(0, K) | |
index = index.astype(int) | |
keypoints += np.stack((x_offset[index], y_offset[index]), axis=-1) | |
# unsqueeze the instance dimension for single-instance results | |
keypoints = keypoints[None].astype(np.float32) | |
scores = scores[None] | |
keypoints = self._activation_pts_to_kpts(keypoints) | |
return keypoints, scores | |