Spaces:
Running
on
Zero
Running
on
Zero
_base_ = '../common/ms-90k_coco.py' | |
# model settings | |
model = dict( | |
type='BoxInst', | |
data_preprocessor=dict( | |
type='BoxInstDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32, | |
mask_stride=4, | |
pairwise_size=3, | |
pairwise_dilation=2, | |
pairwise_color_thresh=0.3, | |
bottom_pixels_removed=10), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), | |
style='pytorch'), | |
neck=dict( | |
type='FPN', | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
start_level=1, | |
add_extra_convs='on_output', # use P5 | |
num_outs=5, | |
relu_before_extra_convs=True), | |
bbox_head=dict( | |
type='BoxInstBboxHead', | |
num_params=593, | |
num_classes=80, | |
in_channels=256, | |
stacked_convs=4, | |
feat_channels=256, | |
strides=[8, 16, 32, 64, 128], | |
norm_on_bbox=True, | |
centerness_on_reg=True, | |
dcn_on_last_conv=False, | |
center_sampling=True, | |
conv_bias=True, | |
loss_cls=dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
loss_bbox=dict(type='GIoULoss', loss_weight=1.0), | |
loss_centerness=dict( | |
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), | |
mask_head=dict( | |
type='BoxInstMaskHead', | |
num_layers=3, | |
feat_channels=16, | |
size_of_interest=8, | |
mask_out_stride=4, | |
topk_masks_per_img=64, | |
mask_feature_head=dict( | |
in_channels=256, | |
feat_channels=128, | |
start_level=0, | |
end_level=2, | |
out_channels=16, | |
mask_stride=8, | |
num_stacked_convs=4, | |
norm_cfg=dict(type='BN', requires_grad=True)), | |
loss_mask=dict( | |
type='DiceLoss', | |
use_sigmoid=True, | |
activate=True, | |
eps=5e-6, | |
loss_weight=1.0)), | |
# model training and testing settings | |
test_cfg=dict( | |
nms_pre=1000, | |
min_bbox_size=0, | |
score_thr=0.05, | |
nms=dict(type='nms', iou_threshold=0.6), | |
max_per_img=100, | |
mask_thr=0.5)) | |
# optimizer | |
optim_wrapper = dict(optimizer=dict(lr=0.01)) | |
# evaluator | |
val_evaluator = dict(metric=['bbox', 'segm']) | |
test_evaluator = val_evaluator | |