Spaces:
Running
on
Zero
Running
on
Zero
_base_ = '../_base_/default_runtime.py' | |
# dataset settings | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/detection/coco/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/detection/', | |
# 'data/': 's3://openmmlab/datasets/detection/' | |
# })) | |
backend_args = None | |
# Align with Detectron2 | |
backend = 'pillow' | |
train_pipeline = [ | |
dict( | |
type='LoadImageFromFile', | |
backend_args=backend_args, | |
imdecode_backend=backend), | |
dict( | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True, | |
poly2mask=False), | |
dict( | |
type='RandomChoiceResize', | |
scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), | |
(1333, 768), (1333, 800)], | |
keep_ratio=True, | |
backend=backend), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
test_pipeline = [ | |
dict( | |
type='LoadImageFromFile', | |
backend_args=backend_args, | |
imdecode_backend=backend), | |
dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend=backend), | |
dict( | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True, | |
poly2mask=False), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=2, | |
num_workers=2, | |
persistent_workers=True, | |
pin_memory=True, | |
sampler=dict(type='InfiniteSampler', shuffle=True), | |
batch_sampler=dict(type='AspectRatioBatchSampler'), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
pin_memory=True, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_val2017.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file=data_root + 'annotations/instances_val2017.json', | |
metric=['bbox', 'segm'], | |
format_only=False, | |
backend_args=backend_args) | |
test_evaluator = val_evaluator | |
# training schedule for 90k | |
max_iter = 90000 | |
train_cfg = dict( | |
type='IterBasedTrainLoop', max_iters=max_iter, val_interval=10000) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
# learning rate | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, | |
end=1000), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_iter, | |
by_epoch=False, | |
milestones=[60000, 80000], | |
gamma=0.1) | |
] | |
# optimizer | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)) | |
# Default setting for scaling LR automatically | |
# - `enable` means enable scaling LR automatically | |
# or not by default. | |
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU). | |
auto_scale_lr = dict(enable=False, base_batch_size=16) | |
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) | |
log_processor = dict(by_epoch=False) | |