Spaces:
Running
on
Zero
Running
on
Zero
_base_ = '../_base_/default_runtime.py' | |
# dataset settings | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
image_size = (1024, 1024) | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/detection/coco/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/detection/', | |
# 'data/': 's3://openmmlab/datasets/detection/' | |
# })) | |
backend_args = None | |
# Standard Scale Jittering (SSJ) resizes and crops an image | |
# with a resize range of 0.8 to 1.25 of the original image size. | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='RandomResize', | |
scale=image_size, | |
ratio_range=(0.8, 1.25), | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=image_size, | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='Resize', scale=(1333, 800), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=2, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='InfiniteSampler'), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_val2017.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file=data_root + 'annotations/instances_val2017.json', | |
metric=['bbox', 'segm'], | |
format_only=False, | |
backend_args=backend_args) | |
test_evaluator = val_evaluator | |
# The model is trained by 270k iterations with batch_size 64, | |
# which is roughly equivalent to 144 epochs. | |
max_iters = 270000 | |
train_cfg = dict( | |
type='IterBasedTrainLoop', max_iters=max_iters, val_interval=10000) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
# optimizer assumes bs=64 | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.00004)) | |
# learning rate policy | |
# lr steps at [0.9, 0.95, 0.975] of the maximum iterations | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, | |
end=1000), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=270000, | |
by_epoch=False, | |
milestones=[243000, 256500, 263250], | |
gamma=0.1) | |
] | |
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=10000)) | |
log_processor = dict(by_epoch=False) | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# USER SHOULD NOT CHANGE ITS VALUES. | |
# base_batch_size = (32 GPUs) x (2 samples per GPU) | |
auto_scale_lr = dict(base_batch_size=64) | |