Spaces:
Running
on
Zero
Running
on
Zero
_base_ = 'ssj_270k_coco-instance.py' | |
# dataset settings | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
image_size = (1024, 1024) | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/detection/coco/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/detection/', | |
# 'data/': 's3://openmmlab/datasets/detection/' | |
# })) | |
backend_args = None | |
# Standard Scale Jittering (SSJ) resizes and crops an image | |
# with a resize range of 0.8 to 1.25 of the original image size. | |
load_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | |
dict( | |
type='RandomResize', | |
scale=image_size, | |
ratio_range=(0.8, 1.25), | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=image_size, | |
recompute_bbox=True, | |
allow_negative_crop=True), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='Pad', size=image_size), | |
] | |
train_pipeline = [ | |
dict(type='CopyPaste', max_num_pasted=100), | |
dict(type='PackDetInputs') | |
] | |
train_dataloader = dict( | |
dataset=dict( | |
_delete_=True, | |
type='MultiImageMixDataset', | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=load_pipeline, | |
backend_args=backend_args), | |
pipeline=train_pipeline)) | |