Spaces:
Running
on
Zero
Running
on
Zero
_base_ = ['../_base_/default_runtime.py'] | |
model = dict( | |
type='CrowdDet', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[103.53, 116.28, 123.675], | |
std=[57.375, 57.12, 58.395], | |
bgr_to_rgb=False, | |
pad_size_divisor=64, | |
# This option is set according to https://github.com/Purkialo/CrowdDet/ | |
# blob/master/lib/data/CrowdHuman.py The images in the entire batch are | |
# resize together. | |
batch_augments=[ | |
dict(type='BatchResize', scale=(1400, 800), pad_size_divisor=64) | |
]), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
style='pytorch', | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | |
neck=dict( | |
type='FPN', | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
num_outs=5, | |
upsample_cfg=dict(mode='bilinear', align_corners=False)), | |
rpn_head=dict( | |
type='RPNHead', | |
in_channels=256, | |
feat_channels=256, | |
anchor_generator=dict( | |
type='AnchorGenerator', | |
scales=[8], | |
ratios=[1.0, 2.0, 3.0], | |
strides=[4, 8, 16, 32, 64], | |
centers=[(8, 8), (8, 8), (8, 8), (8, 8), (8, 8)]), | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[0.0, 0.0, 0.0, 0.0], | |
target_stds=[1.0, 1.0, 1.0, 1.0], | |
clip_border=False), | |
loss_cls=dict(type='CrossEntropyLoss', loss_weight=1.0), | |
loss_bbox=dict(type='L1Loss', loss_weight=1.0)), | |
roi_head=dict( | |
type='MultiInstanceRoIHead', | |
bbox_roi_extractor=dict( | |
type='SingleRoIExtractor', | |
roi_layer=dict( | |
type='RoIAlign', | |
output_size=7, | |
sampling_ratio=-1, | |
aligned=True, | |
use_torchvision=True), | |
out_channels=256, | |
featmap_strides=[4, 8, 16, 32]), | |
bbox_head=dict( | |
type='MultiInstanceBBoxHead', | |
with_refine=False, | |
num_shared_fcs=2, | |
in_channels=256, | |
fc_out_channels=1024, | |
roi_feat_size=7, | |
num_classes=1, | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[0., 0., 0., 0.], | |
target_stds=[0.1, 0.1, 0.2, 0.2]), | |
reg_class_agnostic=False, | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
loss_weight=1.0, | |
use_sigmoid=False, | |
reduction='none'), | |
loss_bbox=dict( | |
type='SmoothL1Loss', loss_weight=1.0, reduction='none'))), | |
# model training and testing settings | |
train_cfg=dict( | |
rpn=dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.7, | |
neg_iou_thr=(0.3, 0.7), | |
min_pos_iou=0.3, | |
match_low_quality=True, | |
ignore_iof_thr=-1), | |
sampler=dict( | |
type='RandomSampler', | |
num=256, | |
pos_fraction=0.5, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=False), | |
allowed_border=-1, | |
pos_weight=-1, | |
debug=False), | |
rpn_proposal=dict( | |
nms_pre=2400, | |
max_per_img=2000, | |
nms=dict(type='nms', iou_threshold=0.7), | |
min_bbox_size=2), | |
rcnn=dict( | |
assigner=dict( | |
type='MultiInstanceAssigner', | |
pos_iou_thr=0.5, | |
neg_iou_thr=0.5, | |
min_pos_iou=0.3, | |
match_low_quality=False, | |
ignore_iof_thr=-1), | |
sampler=dict( | |
type='MultiInsRandomSampler', | |
num=512, | |
pos_fraction=0.5, | |
neg_pos_ub=-1, | |
add_gt_as_proposals=False), | |
pos_weight=-1, | |
debug=False)), | |
test_cfg=dict( | |
rpn=dict( | |
nms_pre=1200, | |
max_per_img=1000, | |
nms=dict(type='nms', iou_threshold=0.7), | |
min_bbox_size=2), | |
rcnn=dict( | |
nms=dict(type='nms', iou_threshold=0.5), | |
score_thr=0.01, | |
max_per_img=500))) | |
dataset_type = 'CrowdHumanDataset' | |
data_root = 'data/CrowdHuman/' | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/tracking/CrowdHuman/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/tracking/', | |
# 'data/': 's3://openmmlab/datasets/tracking/' | |
# })) | |
backend_args = None | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', | |
'flip_direction')) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=backend_args), | |
dict(type='Resize', scale=(1400, 800), keep_ratio=True), | |
# avoid bboxes being resized | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=2, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_sampler=None, # The 'batch_sampler' may decrease the precision | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotation_train.odgt', | |
data_prefix=dict(img='Images/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotation_val.odgt', | |
data_prefix=dict(img='Images/'), | |
test_mode=True, | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict( | |
type='CrowdHumanMetric', | |
ann_file=data_root + 'annotation_val.odgt', | |
metric=['AP', 'MR', 'JI'], | |
backend_args=backend_args) | |
test_evaluator = val_evaluator | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=30, val_interval=1) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=800), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=30, | |
by_epoch=True, | |
milestones=[24, 27], | |
gamma=0.1) | |
] | |
# optimizer | |
auto_scale_lr = dict(base_batch_size=16) | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.002, momentum=0.9, weight_decay=0.0001)) | |