Spaces:
Running
on
Zero
Running
on
Zero
_base_ = [ | |
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' | |
] | |
model = dict( | |
type='DABDETR', | |
num_queries=300, | |
with_random_refpoints=False, | |
num_patterns=0, | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=1), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(3, ), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=False), | |
norm_eval=True, | |
style='pytorch', | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | |
neck=dict( | |
type='ChannelMapper', | |
in_channels=[2048], | |
kernel_size=1, | |
out_channels=256, | |
act_cfg=None, | |
norm_cfg=None, | |
num_outs=1), | |
encoder=dict( | |
num_layers=6, | |
layer_cfg=dict( | |
self_attn_cfg=dict( | |
embed_dims=256, num_heads=8, dropout=0., batch_first=True), | |
ffn_cfg=dict( | |
embed_dims=256, | |
feedforward_channels=2048, | |
num_fcs=2, | |
ffn_drop=0., | |
act_cfg=dict(type='PReLU')))), | |
decoder=dict( | |
num_layers=6, | |
query_dim=4, | |
query_scale_type='cond_elewise', | |
with_modulated_hw_attn=True, | |
layer_cfg=dict( | |
self_attn_cfg=dict( | |
embed_dims=256, | |
num_heads=8, | |
attn_drop=0., | |
proj_drop=0., | |
cross_attn=False), | |
cross_attn_cfg=dict( | |
embed_dims=256, | |
num_heads=8, | |
attn_drop=0., | |
proj_drop=0., | |
cross_attn=True), | |
ffn_cfg=dict( | |
embed_dims=256, | |
feedforward_channels=2048, | |
num_fcs=2, | |
ffn_drop=0., | |
act_cfg=dict(type='PReLU'))), | |
return_intermediate=True), | |
positional_encoding=dict(num_feats=128, temperature=20, normalize=True), | |
bbox_head=dict( | |
type='DABDETRHead', | |
num_classes=80, | |
embed_dims=256, | |
loss_cls=dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
loss_bbox=dict(type='L1Loss', loss_weight=5.0), | |
loss_iou=dict(type='GIoULoss', loss_weight=2.0)), | |
# training and testing settings | |
train_cfg=dict( | |
assigner=dict( | |
type='HungarianAssigner', | |
match_costs=[ | |
dict(type='FocalLossCost', weight=2., eps=1e-8), | |
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), | |
dict(type='IoUCost', iou_mode='giou', weight=2.0) | |
])), | |
test_cfg=dict(max_per_img=300)) | |
# train_pipeline, NOTE the img_scale and the Pad's size_divisor is different | |
# from the default setting in mmdet. | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict( | |
type='RandomChoice', | |
transforms=[[ | |
dict( | |
type='RandomChoiceResize', | |
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), | |
(608, 1333), (640, 1333), (672, 1333), (704, 1333), | |
(736, 1333), (768, 1333), (800, 1333)], | |
keep_ratio=True) | |
], | |
[ | |
dict( | |
type='RandomChoiceResize', | |
scales=[(400, 1333), (500, 1333), (600, 1333)], | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=(384, 600), | |
allow_negative_crop=True), | |
dict( | |
type='RandomChoiceResize', | |
scales=[(480, 1333), (512, 1333), (544, 1333), | |
(576, 1333), (608, 1333), (640, 1333), | |
(672, 1333), (704, 1333), (736, 1333), | |
(768, 1333), (800, 1333)], | |
keep_ratio=True) | |
]]), | |
dict(type='PackDetInputs') | |
] | |
train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) | |
# optimizer | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.0001), | |
clip_grad=dict(max_norm=0.1, norm_type=2), | |
paramwise_cfg=dict( | |
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)})) | |
# learning policy | |
max_epochs = 50 | |
train_cfg = dict( | |
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [ | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_epochs, | |
by_epoch=True, | |
milestones=[40], | |
gamma=0.1) | |
] | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# USER SHOULD NOT CHANGE ITS VALUES. | |
# base_batch_size = (8 GPUs) x (2 samples per GPU) | |
auto_scale_lr = dict(base_batch_size=16, enable=False) | |