Spaces:
Running
on
Zero
Running
on
Zero
_base_ = [ | |
'../_base_/datasets/coco_detection.py', | |
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' | |
] | |
model = dict( | |
type='DDOD', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
style='pytorch', | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | |
neck=dict( | |
type='FPN', | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
start_level=1, | |
add_extra_convs='on_output', | |
num_outs=5), | |
bbox_head=dict( | |
type='DDODHead', | |
num_classes=80, | |
in_channels=256, | |
stacked_convs=4, | |
feat_channels=256, | |
anchor_generator=dict( | |
type='AnchorGenerator', | |
ratios=[1.0], | |
octave_base_scale=8, | |
scales_per_octave=1, | |
strides=[8, 16, 32, 64, 128]), | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[.0, .0, .0, .0], | |
target_stds=[0.1, 0.1, 0.2, 0.2]), | |
loss_cls=dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), | |
loss_iou=dict( | |
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), | |
train_cfg=dict( | |
# assigner is mean cls_assigner | |
assigner=dict(type='ATSSAssigner', topk=9, alpha=0.8), | |
reg_assigner=dict(type='ATSSAssigner', topk=9, alpha=0.5), | |
allowed_border=-1, | |
pos_weight=-1, | |
debug=False), | |
test_cfg=dict( | |
nms_pre=1000, | |
min_bbox_size=0, | |
score_thr=0.05, | |
nms=dict(type='nms', iou_threshold=0.6), | |
max_per_img=100)) | |
# optimizer | |
optim_wrapper = dict( | |
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) | |