Spaces:
Running
on
Zero
Running
on
Zero
BBoxMaskPose-demo
/
mmpose
/configs
/mmdet
/efficientnet
/retinanet_effb3_fpn_8xb4-crop896-1x_coco.py
_base_ = [ | |
'../_base_/models/retinanet_r50_fpn.py', | |
'../_base_/schedules/schedule_1x.py', | |
'../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' | |
] | |
image_size = (896, 896) | |
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] | |
norm_cfg = dict(type='BN', requires_grad=True) | |
checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa | |
model = dict( | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32, | |
batch_augments=batch_augments), | |
backbone=dict( | |
_delete_=True, | |
type='EfficientNet', | |
arch='b3', | |
drop_path_rate=0.2, | |
out_indices=(3, 4, 5), | |
frozen_stages=0, | |
norm_cfg=dict( | |
type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), | |
norm_eval=False, | |
init_cfg=dict( | |
type='Pretrained', prefix='backbone', checkpoint=checkpoint)), | |
neck=dict( | |
in_channels=[48, 136, 384], | |
start_level=0, | |
out_channels=256, | |
relu_before_extra_convs=True, | |
no_norm_on_lateral=True, | |
norm_cfg=norm_cfg), | |
bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), | |
# training and testing settings | |
train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) | |
# dataset settings | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='RandomResize', | |
scale=image_size, | |
ratio_range=(0.8, 1.2), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=image_size), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), | |
dict(type='Resize', scale=image_size, keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=4, num_workers=4, dataset=dict(pipeline=train_pipeline)) | |
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |
# optimizer | |
optim_wrapper = dict( | |
optimizer=dict(lr=0.04), | |
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) | |
# learning policy | |
max_epochs = 12 | |
param_scheduler = [ | |
dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_epochs, | |
by_epoch=True, | |
milestones=[8, 11], | |
gamma=0.1) | |
] | |
train_cfg = dict(max_epochs=max_epochs) | |
# cudnn_benchmark=True can accelerate fix-size training | |
env_cfg = dict(cudnn_benchmark=True) | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# USER SHOULD NOT CHANGE ITS VALUES. | |
# base_batch_size = (8 GPUs) x (4 samples per GPU) | |
auto_scale_lr = dict(base_batch_size=32) | |